Spaces:
Runtime error
Runtime error
Aleksandr Maiorov
commited on
Commit
·
faf7233
1
Parent(s):
fa63c41
v 0.1
Browse files- Dockerfile +14 -0
- app.py +72 -0
Dockerfile
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
RUN useradd -m -u 1000 user
|
4 |
+
USER user
|
5 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
6 |
+
|
7 |
+
WORKDIR /app
|
8 |
+
|
9 |
+
COPY --chown=user ./app/requirements.txt requirements.txt
|
10 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
11 |
+
RUN pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu
|
12 |
+
|
13 |
+
COPY --chown=user . /app
|
14 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
|
3 |
+
from fastapi import FastAPI
|
4 |
+
from llama_index.llms.llama_cpp import LlamaCPP
|
5 |
+
from transformers import AutoTokenizer
|
6 |
+
|
7 |
+
logging.basicConfig(
|
8 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
9 |
+
level=logging.INFO
|
10 |
+
)
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
|
13 |
+
logger.info("Запускаемся... 🥳🥳🥳")
|
14 |
+
|
15 |
+
app = FastAPI()
|
16 |
+
model_url = "https://huggingface.co/Qwen/Qwen2.5-7B-Instruct-GGUF/resolve/main/qwen2.5-7b-instruct-q3_k_m.gguf"
|
17 |
+
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-7B-Instruct")
|
19 |
+
|
20 |
+
|
21 |
+
def messages_to_prompt(messages):
|
22 |
+
messages = [{"role": m.role.value, "content": m.content} for m in messages]
|
23 |
+
prompt = tokenizer.apply_chat_template(
|
24 |
+
messages, tokenize=False, add_generation_prompt=True
|
25 |
+
)
|
26 |
+
return prompt
|
27 |
+
|
28 |
+
|
29 |
+
def completion_to_prompt(completion):
|
30 |
+
messages = [{"role": "user", "content": completion}]
|
31 |
+
prompt = tokenizer.apply_chat_template(
|
32 |
+
messages, tokenize=False, add_generation_prompt=True
|
33 |
+
)
|
34 |
+
return prompt
|
35 |
+
|
36 |
+
|
37 |
+
llm = LlamaCPP(
|
38 |
+
# You can pass in the URL to a GGML model to download it automatically
|
39 |
+
model_url=model_url,
|
40 |
+
# optionally, you can set the path to a pre-downloaded model instead of model_url
|
41 |
+
model_path=None,
|
42 |
+
temperature=0.1,
|
43 |
+
max_new_tokens=256,
|
44 |
+
# llama2 has a context window of 4096 tokens, but we set it lower to allow for some wiggle room
|
45 |
+
context_window=16384,
|
46 |
+
# kwargs to pass to __call__()
|
47 |
+
generate_kwargs={},
|
48 |
+
# kwargs to pass to __init__()
|
49 |
+
# set to at least 1 to use GPU
|
50 |
+
model_kwargs={"n_gpu_layers": -1},
|
51 |
+
# transform inputs into Llama2 format
|
52 |
+
messages_to_prompt=messages_to_prompt,
|
53 |
+
completion_to_prompt=completion_to_prompt,
|
54 |
+
verbose=True,
|
55 |
+
)
|
56 |
+
|
57 |
+
@app.get("/")
|
58 |
+
def greet_json():
|
59 |
+
return {"Hello": "World!"}
|
60 |
+
|
61 |
+
@app.put("/system-prompt")
|
62 |
+
async def set_system_prompt(text: str):
|
63 |
+
logger.info('post/system-prompt')
|
64 |
+
# global SYSTEM_PROMPT
|
65 |
+
# SYSTEM_PROMPT = text
|
66 |
+
|
67 |
+
@app.post("/predict")
|
68 |
+
async def predict(text: str):
|
69 |
+
# Генерация ответа с помощью модели
|
70 |
+
logger.info('post/predict')
|
71 |
+
response = llm.complete(text)
|
72 |
+
return {"response": response}
|