Spaces:
Sleeping
Sleeping
revert to working state
Browse files
main.py
CHANGED
|
@@ -1,31 +1,12 @@
|
|
| 1 |
-
from fastapi import FastAPI, UploadFile, File
|
| 2 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
from unsloth import FastVisionModel
|
| 4 |
import torch
|
| 5 |
import shutil
|
| 6 |
import os
|
| 7 |
-
import json
|
| 8 |
-
import base64
|
| 9 |
-
import tempfile
|
| 10 |
-
import logging
|
| 11 |
-
|
| 12 |
-
logging.basicConfig(level=logging.INFO)
|
| 13 |
-
logger = logging.getLogger(__name__)
|
| 14 |
-
|
| 15 |
os.environ["TORCHINDUCTOR_CACHE_DIR"] = "/tmp/torchinductor"
|
| 16 |
|
| 17 |
app = FastAPI()
|
| 18 |
|
| 19 |
-
# Add CORS for WebSocket
|
| 20 |
-
app.add_middleware(
|
| 21 |
-
CORSMiddleware,
|
| 22 |
-
allow_origins=["*"],
|
| 23 |
-
allow_credentials=True,
|
| 24 |
-
allow_methods=["*"],
|
| 25 |
-
allow_headers=["*"],
|
| 26 |
-
)
|
| 27 |
-
|
| 28 |
-
# Load model at startup (same as your original)
|
| 29 |
model, processor = FastVisionModel.from_pretrained("unsloth/gemma-3n-e2b-it", load_in_4bit=True)
|
| 30 |
model.generation_config.cache_implementation = "static"
|
| 31 |
|
|
@@ -64,101 +45,15 @@ async def transcribe_audio(file: UploadFile = File(...)):
|
|
| 64 |
tokenize=True, return_dict=True, return_tensors="pt"
|
| 65 |
).to(model.device, dtype=model.dtype)
|
| 66 |
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
result = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
|
|
|
|
|
|
| 69 |
result = result.split("model\n")[-1].split("<end_of_turn>")[0].strip()
|
| 70 |
-
|
| 71 |
-
# Cleanup
|
| 72 |
-
if os.path.exists(filepath):
|
| 73 |
-
os.remove(filepath)
|
| 74 |
-
|
| 75 |
return {"text": result}
|
| 76 |
|
| 77 |
-
# Simple WebSocket endpoint
|
| 78 |
-
@app.websocket("/ws")
|
| 79 |
-
async def websocket_endpoint(websocket: WebSocket):
|
| 80 |
-
await websocket.accept()
|
| 81 |
-
logger.info("WebSocket client connected")
|
| 82 |
-
|
| 83 |
-
try:
|
| 84 |
-
while True:
|
| 85 |
-
# Receive message
|
| 86 |
-
data = await websocket.receive_text()
|
| 87 |
-
message = json.loads(data)
|
| 88 |
-
logger.info(f"Received message: {message}")
|
| 89 |
-
|
| 90 |
-
# Handle audio data
|
| 91 |
-
if "audio_data" in message:
|
| 92 |
-
audio_b64 = message["audio_data"]
|
| 93 |
-
mime_type = message.get("mime_type", "audio/wav")
|
| 94 |
-
|
| 95 |
-
try:
|
| 96 |
-
# Use your exact transcribe logic
|
| 97 |
-
transcription = await transcribe_base64_audio(audio_b64, mime_type)
|
| 98 |
-
|
| 99 |
-
# Send response
|
| 100 |
-
response = {
|
| 101 |
-
"type": "transcription",
|
| 102 |
-
"text": transcription
|
| 103 |
-
}
|
| 104 |
-
await websocket.send_text(json.dumps(response))
|
| 105 |
-
|
| 106 |
-
except Exception as e:
|
| 107 |
-
logger.error(f"Transcription error: {e}")
|
| 108 |
-
await websocket.send_text(json.dumps({
|
| 109 |
-
"type": "error",
|
| 110 |
-
"message": str(e)
|
| 111 |
-
}))
|
| 112 |
-
|
| 113 |
-
# Handle ping/pong
|
| 114 |
-
elif message.get("type") == "ping":
|
| 115 |
-
await websocket.send_text(json.dumps({"type": "pong"}))
|
| 116 |
-
|
| 117 |
-
else:
|
| 118 |
-
await websocket.send_text(json.dumps({
|
| 119 |
-
"type": "error",
|
| 120 |
-
"message": "Unknown message format"
|
| 121 |
-
}))
|
| 122 |
-
|
| 123 |
-
except WebSocketDisconnect:
|
| 124 |
-
logger.info("WebSocket client disconnected")
|
| 125 |
-
except Exception as e:
|
| 126 |
-
logger.error(f"WebSocket error: {e}")
|
| 127 |
-
|
| 128 |
-
async def transcribe_base64_audio(audio_b64: str, mime_type: str) -> str:
|
| 129 |
-
"""Use your exact transcribe logic but with base64 audio data"""
|
| 130 |
-
|
| 131 |
-
# Convert base64 to file (same as your transcribe logic)
|
| 132 |
-
audio_data = base64.b64decode(audio_b64)
|
| 133 |
-
|
| 134 |
-
# Create temp file
|
| 135 |
-
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
|
| 136 |
-
temp_file.write(audio_data)
|
| 137 |
-
filepath = temp_file.name
|
| 138 |
-
|
| 139 |
-
try:
|
| 140 |
-
# Your exact transcribe logic
|
| 141 |
-
messages = [{
|
| 142 |
-
"role": "user",
|
| 143 |
-
"content": [
|
| 144 |
-
{"type": "audio", "audio": filepath},
|
| 145 |
-
{"type": "text", "text": "Transcribe this audio"},
|
| 146 |
-
]
|
| 147 |
-
}]
|
| 148 |
-
|
| 149 |
-
input_ids = processor.apply_chat_template(
|
| 150 |
-
messages, add_generation_prompt=True,
|
| 151 |
-
tokenize=True, return_dict=True, return_tensors="pt"
|
| 152 |
-
).to(model.device, dtype=model.dtype)
|
| 153 |
|
| 154 |
-
outputs = model.generate(**input_ids, max_new_tokens=64, do_sample=False, temperature=0.1)
|
| 155 |
-
result = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 156 |
-
print(result)
|
| 157 |
-
result = result.split("model\n")[-1].split("<end_of_turn>")[0].strip()
|
| 158 |
-
|
| 159 |
-
return result
|
| 160 |
-
|
| 161 |
-
finally:
|
| 162 |
-
# Cleanup temp file
|
| 163 |
-
if os.path.exists(filepath):
|
| 164 |
-
os.remove(filepath)
|
|
|
|
| 1 |
+
from fastapi import FastAPI, UploadFile, File
|
|
|
|
| 2 |
from unsloth import FastVisionModel
|
| 3 |
import torch
|
| 4 |
import shutil
|
| 5 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
os.environ["TORCHINDUCTOR_CACHE_DIR"] = "/tmp/torchinductor"
|
| 7 |
|
| 8 |
app = FastAPI()
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
model, processor = FastVisionModel.from_pretrained("unsloth/gemma-3n-e2b-it", load_in_4bit=True)
|
| 11 |
model.generation_config.cache_implementation = "static"
|
| 12 |
|
|
|
|
| 45 |
tokenize=True, return_dict=True, return_tensors="pt"
|
| 46 |
).to(model.device, dtype=model.dtype)
|
| 47 |
|
| 48 |
+
# Generate output from the model
|
| 49 |
+
outputs = model.generate(**input_ids, max_new_tokens=64, do_sample=False,
|
| 50 |
+
temperature=0.1)
|
| 51 |
+
|
| 52 |
+
# decode and print the output as text
|
| 53 |
result = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 54 |
+
|
| 55 |
+
# Extract only transcription
|
| 56 |
result = result.split("model\n")[-1].split("<end_of_turn>")[0].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
return {"text": result}
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|