Spaces:
Running
Running
| # Import pprint for pretty-printing the results in a more readable format | |
| import pprint | |
| # Import the SpeechScore class to evaluate speech quality metrics | |
| from speechscore import SpeechScore | |
| # Main block to ensure the code runs only when executed directly | |
| if __name__ == '__main__': | |
| # Initialize a SpeechScore object with a list of score metrics to be evaluated | |
| # Supports any subsets of the list | |
| mySpeechScore = SpeechScore([ | |
| 'SRMR', 'PESQ', 'NB_PESQ', 'STOI', 'SISDR', | |
| 'FWSEGSNR', 'LSD', 'BSSEval', 'DNSMOS', | |
| 'SNR', 'SSNR', 'LLR', 'CSIG', 'CBAK', | |
| 'COVL', 'MCD' | |
| ]) | |
| # Call the SpeechScore object to evaluate the speech metrics between 'noisy' and 'clean' audio | |
| # Arguments: | |
| # - {test_path, reference_path} supports audio directories or audio paths (.wav or .flac) | |
| # - window (float): seconds, set None to specify no windowing (process the full audio) | |
| # - score_rate (int): specifies the sampling rate at which the metrics should be computed | |
| # - return_mean (bool): set True to specify that the mean score for each metric should be returned | |
| scores = mySpeechScore(test_path='audios/noisy/', reference_path='audios/clean/', window=None, score_rate=16000, return_mean=True) | |
| # Pretty-print the resulting scores in a readable format | |
| pprint.pprint(scores) | |
| # Print only the resulting mean scores in a readable format | |
| pprint.pprint(scores['Mean_Score']) | |