File size: 20,430 Bytes
1fac276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
import streamlit as st
import pandas as pd
import json
from openai import OpenAI
import os
import uuid
import time

# Sample data - you'll need to create data.py or embed this data
restaurants_data = [
    {"id": "r001", "name": "Spice Garden", "locality": "Downtown", "cuisine": "Indian", "price_range": "800-1200"},
    {"id": "r002", "name": "Pizza Palace", "locality": "Mall Road", "cuisine": "Italian", "price_range": "400-800"},
    {"id": "r003", "name": "Dragon House", "locality": "City Center", "cuisine": "Chinese", "price_range": "600-1000"},
    {"id": "r004", "name": "Burger Junction", "locality": "Food Street", "cuisine": "American", "price_range": "300-600"},
    {"id": "r005", "name": "Sushi Bar", "locality": "Downtown", "cuisine": "Japanese", "price_range": "1000-1500"},
]

reservation_data = [
    {"reservation_id": 31005202500001, "restaurant_id": "r001", "user_name": "John Doe", "party_size": 4, "date": "2025-06-15", "time": "19:00", "special_requests": "", "status": "Confirmed"},
]

# Streamlit UI setup
st.set_page_config(page_title="foodieSpot", layout="centered")

class BookingState:
    def __init__(self):
        self.data = {
            "reservation_id": None,
            "state": None,
            "cuisine_preference": None,
            "location": None,
            "date": None,
            "time": None,
            "party_size": None,
            "special_requests": None,
            "restaurant_id": None,
            "user_name": None
        }

    def update(self, **kwargs):
        for key, value in kwargs.items():
            if key in self.data:
                self.data[key] = value
            else:
                raise KeyError(f"Invalid key: '{key}' not in booking data.")
        return self.check_state()

    def check_state(self):
        return {k: v for k, v in self.data.items() if v is not None}

    def is_complete(self):
        required = [
            "cuisine_preference", "location", "date", "time", "party_size",
            "restaurant_id", "user_name"
        ]
        return all(self.data.get(k) is not None for k in required)

    def reset(self):
        for key in self.data:
            self.data[key] = None

    def to_dict(self):
        return self.data.copy()

class ReservationManager:
    def __init__(self, restaurants_df, reservation_df):
        self.restaurants_df = restaurants_df
        self.reservations_df = reservation_df
        self.reservation_counter = 31005202500001

    def _generate_reservation_id(self):
        self.reservation_counter += 1
        return self.reservation_counter

    def is_valid_booking(self, booking_state):
        required = ["restaurant_id", "user_name", "party_size", "date", "time"]
        return all(booking_state.data.get(k) for k in required)

    def add_reservation(self, booking_state):
        if not self.is_valid_booking(booking_state):
            missing = [
                k for k in
                ["restaurant_id", "user_name", "party_size", "date", "time"]
                if booking_state.data.get(k) is None
            ]
            return {
                "success": False,
                "message": "Reservation could not be created. Missing fields.",
                "missing_fields": missing
            }

        reservation_id = self._generate_reservation_id()

        reservation = {
            "reservation_id": reservation_id,
            "restaurant_id": booking_state.data["restaurant_id"],
            "user_name": booking_state.data["user_name"],
            "party_size": booking_state.data["party_size"],
            "date": booking_state.data["date"],
            "time": booking_state.data["time"],
            "special_requests": booking_state.data.get("special_requests", ""),
            "status": "Confirmed"
        }

        # Add to DataFrame
        new_row = pd.DataFrame([reservation])
        self.reservations_df = pd.concat([self.reservations_df, new_row], ignore_index=True)

        return {
            "success": True,
            "message": "Reservation confirmed!",
            "reservation_details": reservation
        }

    def get_all_reservations(self):
        return self.reservations_df.to_dict(orient="records")

class RestaurantQueryEngine:
    def __init__(self, df):
        self.df = df

    def get_options(self, column_name):
        if column_name in self.df.columns:
            return sorted(self.df[column_name].dropna().unique().tolist())
        return []

    def filter_by(self, column_name, value):
        result = self.df.copy()
        if column_name in result.columns and value is not None:
            result = result[result[column_name] == value]
        return result[["id", "name", "locality", "cuisine", "price_range"]].to_dict(orient="records")

# Initialize OpenAI client
@st.cache_resource
def get_openai_client():
    api_key = os.environ.get('OPENAI_API_KEY')
    if not api_key:
        st.error("❌ OPENAI_API_KEY environment variable is required")
        st.info("Please set your OpenAI API key in the Hugging Face Spaces settings")
        st.stop()
    return OpenAI(api_key=api_key)

# Initialize session state
if "messages" not in st.session_state:
    st.session_state.messages = []

if "session_id" not in st.session_state:
    st.session_state.session_id = str(uuid.uuid4())

if "page" not in st.session_state:
    st.session_state.page = "chat"

if "booking_state" not in st.session_state:
    st.session_state.booking_state = BookingState()

if "reservation_manager" not in st.session_state:
    restaurants_df = pd.DataFrame(restaurants_data)
    reservations_df = pd.DataFrame(reservation_data)
    st.session_state.reservation_manager = ReservationManager(restaurants_df, reservations_df)

if "query_engine" not in st.session_state:
    restaurants_df = pd.DataFrame(restaurants_data)
    st.session_state.query_engine = RestaurantQueryEngine(restaurants_df)

if "conversation_history" not in st.session_state:
    st.session_state.conversation_history = []

# Tools definition
tools = [{
    "type": "function",
    "function": {
        "name": "get_column_options",
        "description": "Get unique available values for a column like cuisine, locality, or price_range.",
        "parameters": {
            "type": "object",
            "properties": {
                "column_name": {
                    "type": "string",
                    "description": "The column to get unique values from. Common options: 'cuisine', 'locality', 'price_range'."
                }
            },
            "required": ["column_name"]
        }
    }
}, {
    "type": "function",
    "function": {
        "name": "filter_restaurants",
        "description": "Filter the list of restaurants based on a specific attribute like cuisine, location, or price range.",
        "parameters": {
            "type": "object",
            "properties": {
                "column_name": {
                    "type": "string",
                    "description": "The column to filter by. Common values: 'cuisine', 'locality', 'price_range'."
                },
                "value": {
                    "type": "string",
                    "description": "The value to match in the specified column."
                }
            },
            "required": ["column_name", "value"]
        }
    }
}, {
    "type": "function",
    "function": {
        "name": "update_booking_state",
        "description": "Update the booking information with user's reservation details.",
        "parameters": {
            "type": "object",
            "properties": {
                "cuisine_preference": {"type": "string"},
                "location": {"type": "string"},
                "date": {"type": "string", "description": "Date of reservation in YYYY-MM-DD format."},
                "time": {"type": "string", "description": "Time of reservation in HH:MM format."},
                "party_size": {"type": "integer"},
                "special_requests": {"type": "string"},
                "restaurant_id": {"type": "string"},
                "user_name": {"type": "string"}
            },
            "required": []
        }
    }
}, {
    "type": "function",
    "function": {
        "name": "finalize_booking",
        "description": "Check if all necessary booking information is filled. If complete, return all data.",
        "parameters": {
            "type": "object",
            "properties": {}
        }
    }
}, {
    "type": "function",
    "function": {
        "name": "make_reservation",
        "description": "Create a confirmed reservation using current booking state and return reservation ID and details.",
        "parameters": {
            "type": "object",
            "properties": {}
        }
    }
}]

SYSTEM_PROMPT = """
You are a friendly and efficient restaurant reservation assistant.

Your role is to help users find and reserve a restaurant based on their preferences like cuisine, location, date, time, and party size. If needed, collect this information in a polite and conversational way.

Recommendation and suggestion:
- ask user politely what they want the suggestions to be based on, location, cuisine, or price_range.
- when the user gives the value for a suggestion, then show him available restaurants for that value.
- **DO NOT SHOW MORE THAN 4 OPTIONS AT A TIME**

Information Collection:
- Reservation Details needed to complete a booking: [cuisine_preference, location, date, time, party_size, special_requests, restaurant_id, user_name]
- **ASK FOR ONE DETAIL ONLY AT A TIME**

Once all information is gathered, confirm the booking by calling the `make_reservation` tool. Be proactive in guiding the user. Do not hallucinate values. Rely on tools to fetch available options or complete bookings.

Always be warm and polite, like a concierge at a high-end restaurant. Use natural and welcoming phrases like:
- "Great! Let me note that down."
- "Could you please tell me…?"
- "Absolutely, I can help with that."
"""

def call_tool(tool_name, args):
    """Direct function calls instead of Flask endpoints"""
    if tool_name == "get_column_options":
        return st.session_state.query_engine.get_options(**args)
    elif tool_name == "update_booking_state":
        return st.session_state.booking_state.update(**args)
    elif tool_name == "make_reservation":
        result = st.session_state.reservation_manager.add_reservation(
            st.session_state.booking_state
        )
        if result['success']:
            st.session_state.booking_state.reset()
        return result
    elif tool_name == "filter_restaurants":
        return st.session_state.query_engine.filter_by(**args)
    elif tool_name == "finalize_booking":
        return st.session_state.booking_state.check_state()
    else:
        return {"error": f"Unknown tool: {tool_name}"}

def process_chat_message(message):
    """Process chat message with OpenAI - replaces Flask /chat endpoint"""
    client = get_openai_client()
    
    st.session_state.conversation_history.append({
        "role": "user",
        "content": message
    })

    messages = [{
        "role": "system",
        "content": SYSTEM_PROMPT
    }] + st.session_state.conversation_history

    continue_processing = True
    final_response = ""

    while continue_processing:
        response = client.chat.completions.create(
            model="gpt-4o-mini",
            messages=messages,
            tools=tools,
            tool_choice="auto"
        )

        message_obj = response.choices[0].message

        if message_obj.content:
            final_response = message_obj.content
            st.session_state.conversation_history.append({
                "role": "assistant",
                "content": message_obj.content
            })
            continue_processing = False

        if message_obj.tool_calls:
            st.session_state.conversation_history.append({
                "role": "assistant",
                "content": "",
                "tool_calls": message_obj.tool_calls
            })

            for tool_call in message_obj.tool_calls:
                tool_name = tool_call.function.name
                tool_args = json.loads(tool_call.function.arguments)
                tool_output = call_tool(tool_name, tool_args)

                st.session_state.conversation_history.append({
                    "role": "tool",
                    "tool_call_id": tool_call.id,
                    "name": tool_name,
                    "content": json.dumps(tool_output)
                })

            messages = [{
                "role": "system",
                "content": SYSTEM_PROMPT
            }] + st.session_state.conversation_history

            continue_processing = True

    return final_response

# Custom CSS
st.markdown("""
<style>
.backend-button {
    position: fixed;
    top: 20px;
    right: 20px;
    z-index: 999;
    background: linear-gradient(45deg, #ff6b9d, #ff8a9b);
    color: white;
    padding: 10px 20px;
    border: none;
    border-radius: 25px;
    font-weight: bold;
    cursor: pointer;
    box-shadow: 0 4px 12px rgba(255, 107, 157, 0.3);
    transition: all 0.3s ease;
}
.backend-button:hover {
    background: linear-gradient(45deg, #ff5588, #ff7799);
    transform: translateY(-2px);
    box-shadow: 0 6px 16px rgba(255, 107, 157, 0.4);
}

.restaurant-tile {
    background: linear-gradient(135deg, #f8f9fa, #e9ecef);
    border-radius: 15px;
    padding: 15px;
    margin: 10px 0;
    box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
    border-left: 4px solid #ff6b9d;
    transition: all 0.3s ease;
}

.restaurant-tile:hover {
    transform: translateY(-2px);
    box-shadow: 0 4px 12px rgba(0, 0, 0, 0.15);
}

.restaurant-name {
    font-weight: bold;
    color: #333;
    font-size: 16px;
    margin-bottom: 8px;
}

.restaurant-detail {
    color: #666;
    font-size: 14px;
    margin: 4px 0;
}

.restaurant-price {
    color: #ff6b9d;
    font-weight: bold;
    font-size: 14px;
}
</style>
""", unsafe_allow_html=True)

# Top navigation
col1, col2 = st.columns([6, 1])
with col2:
    if st.button("πŸ”§ Backend", key="backend_btn", help="View reservations dashboard"):
        st.session_state.page = "backend"
        st.rerun()

def show_chat_page():
    st.title("πŸ’¬ foodieSpot")
    st.markdown("Restaurant Reservations made easy!")
    
    # System ready indicator
    st.success("βœ… System ready")

    # Display chat history
    for msg in st.session_state.messages:
        with st.chat_message(msg["role"]):
            st.markdown(msg["content"])

    # Input and send button
    user_input = st.chat_input("Type your message...")

    if user_input:
        # Handle exit command
        if user_input.lower() in ['exit', 'quit', 'bye']:
            bot_reply = 'Thanks for using foodieSpot! Have a great day! 🍽️'

            # Save messages
            st.session_state.messages.append({"role": "user", "content": user_input})
            st.session_state.messages.append({"role": "assistant", "content": bot_reply})

            # Display messages
            with st.chat_message("user"):
                st.markdown(user_input)
            with st.chat_message("assistant"):
                st.markdown(bot_reply)

            st.stop()

        # Save user message
        st.session_state.messages.append({"role": "user", "content": user_input})
        with st.chat_message("user"):
            st.markdown(user_input)

        # Show typing indicator
        with st.chat_message("assistant"):
            message_placeholder = st.empty()
            message_placeholder.markdown("πŸ€” Thinking...")

            try:
                # Direct function call instead of HTTP request
                bot_reply = process_chat_message(user_input)
            except Exception as e:
                bot_reply = f"❌ An error occurred: {str(e)}"

            # Update the message placeholder with the actual response
            message_placeholder.markdown(bot_reply)

        # Save bot message
        st.session_state.messages.append({"role": "assistant", "content": bot_reply})

    # Sidebar with additional info
    with st.sidebar:
        st.header("ℹ️ App Info")
        st.write("**Session ID:**", st.session_state.session_id[:8] + "...")
        st.write("**Messages:**", len(st.session_state.messages))

        if st.button("πŸ”„ New Session"):
            st.session_state.messages = []
            st.session_state.conversation_history = []
            st.session_state.booking_state.reset()
            st.session_state.session_id = str(uuid.uuid4())
            st.rerun()

        if st.button("🧹 Clear Chat"):
            st.session_state.messages = []
            st.session_state.conversation_history = []
            st.rerun()

        st.header("🍽️ Available Restaurants")
        restaurants = restaurants_data
        for restaurant in restaurants[:8]:  # Show only first 8 restaurants
            restaurant_tile = f"""
            <div class="restaurant-tile">
                <div class="restaurant-name">{restaurant['name']}</div>
                <div class="restaurant-detail">🍜 {restaurant['cuisine']}</div>
                <div class="restaurant-detail">πŸ“ {restaurant['locality']}</div>
                <div class="restaurant-price">πŸ’° β‚Ή{restaurant['price_range']}</div>
            </div>
            """
            st.markdown(restaurant_tile, unsafe_allow_html=True)
            
        if len(restaurants) > 8:
            st.markdown(f"<div style='text-align: center; color: #666; font-style: italic; margin-top: 10px;'>...and {len(restaurants) - 8} more restaurants</div>", unsafe_allow_html=True)

        st.header("πŸ’‘ Tips")
        st.write("Try asking:")
        st.write("- 'Show me Chinese restaurants'")
        st.write("- 'I want to book a table'")
        st.write("- 'What cuisines are available?'")
        st.write("- 'Book for 4 people tomorrow at 7 PM'")

def show_backend_page():
    st.title("πŸ”§ Backend Dashboard")
    st.markdown("Real-time view of restaurant reservations")
    
    if st.button("← Back to Chat"):
        st.session_state.page = "chat"
        st.rerun()
    
    if "last_refresh" not in st.session_state:
        st.session_state.last_refresh = time.time()
    
    # Auto-refresh every 5 seconds
    current_time = time.time()
    if current_time - st.session_state.last_refresh > 5:
        st.session_state.last_refresh = current_time
        st.rerun()
    
    st.markdown(f"πŸ”„ Auto-refreshing every 5 seconds | Last updated: {time.strftime('%H:%M:%S')}")
    
    try:
        # Get reservations data directly from session state
        reservations_data_list = st.session_state.reservation_manager.get_all_reservations()
        
        if reservations_data_list:
            # Convert to DataFrame for better display
            df = pd.DataFrame(reservations_data_list)
            
            st.subheader(f"πŸ“Š Total Reservations: {len(df)}")
            
            # Display metrics
            col1, col2, col3 = st.columns(3)
            with col1:
                st.metric("Total Reservations", len(df))
            with col2:
                if 'status' in df.columns:
                    confirmed = len(df[df['status'] == 'Confirmed'])
                    st.metric("Confirmed", confirmed)
            with col3:
                if 'party_size' in df.columns:
                    total_guests = df['party_size'].sum()
                    st.metric("Total Guests", total_guests)
            
            # Display the table
            st.subheader("πŸ“‹ Reservations Table")
            st.dataframe(
                df,
                use_container_width=True,
                hide_index=True
            )
            
            # Download button
            csv = df.to_csv(index=False)
            st.download_button(
                label="πŸ“₯ Download CSV",
                data=csv,
                file_name=f"reservations_{time.strftime('%Y%m%d_%H%M%S')}.csv",
                mime="text/csv"
            )
            
        else:
            st.info("πŸ“­ No reservations found")
            
    except Exception as e:
        st.error(f"❌ Error fetching data: {str(e)}")

# Main app logic
if st.session_state.page == "chat":
    show_chat_page()
elif st.session_state.page == "backend":
    show_backend_page()