File size: 3,047 Bytes
297e1ab
decda19
 
 
 
 
297e1ab
decda19
 
 
 
 
 
 
297e1ab
decda19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297e1ab
decda19
 
 
 
 
297e1ab
decda19
 
 
 
 
 
 
297e1ab
decda19
 
 
297e1ab
decda19
 
 
 
 
297e1ab
decda19
 
 
297e1ab
decda19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297e1ab
decda19
297e1ab
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import gradio as gr
import torch
from transformers import AutoTokenizer, pipeline
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np

# Configuration
class Config:
    model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
    embedding_model = "all-MiniLM-L6-v2"
    vector_dim = 384 
    top_k = 3 
    chunk_size = 256 

# Vector Database
class VectorDB:
    def __init__(self):
        self.index = faiss.IndexFlatL2(Config.vector_dim)
        self.texts = []
        self.embedding_model = SentenceTransformer(Config.embedding_model)
    
    def add_text(self, text: str):
        embedding = self.embedding_model.encode([text])[0]
        embedding = np.array([embedding], dtype=np.float32)
        faiss.normalize_L2(embedding)
        self.index.add(embedding)
        self.texts.append(text)
    
    def search(self, query: str):
        if self.index.ntotal == 0:
            return []
        query_embedding = self.embedding_model.encode([query])[0]
        query_embedding = np.array([query_embedding], dtype=np.float32)
        faiss.normalize_L2(query_embedding)
        D, I = self.index.search(query_embedding, min(Config.top_k, self.index.ntotal))
        return [self.texts[i] for i in I[0] if i < len(self.texts)]

# Load Model
class TinyChatModel:
    def __init__(self):
        self.tokenizer = AutoTokenizer.from_pretrained(Config.model_name)
        self.pipe = pipeline("text-generation", model=Config.model_name, torch_dtype=torch.bfloat16, device_map="auto")

    def generate_response(self, message: str, context: str = ""):
        messages = [{"role": "user", "content": message}]
        if context:
            messages.insert(0, {"role": "system", "content": f"Context:\n{context}"})
        prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        outputs = self.pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
        return outputs[0]["generated_text"].split("<|assistant|>")[-1].strip()

# Initialize
vector_db = VectorDB()
chat_model = TinyChatModel()

def chat_interface(user_input):
    context = "\n".join(vector_db.search(user_input))
    response = chat_model.generate_response(user_input, context)
    vector_db.add_text(f"User: {user_input}\nAssistant: {response}")
    return response

def add_text_interface(text):
    vector_db.add_text(text)
    return "Text added to memory!"

# Gradio UI
demo = gr.Blocks()
with demo:
    gr.Markdown("# 🦙 TinyChat - AI Chatbot")
    with gr.Row():
        chatbot = gr.Chatbot()
    with gr.Row():
        user_input = gr.Textbox(label="Your Message")
        send_btn = gr.Button("Send")
    with gr.Row():
        add_text_input = gr.Textbox(label="Add Knowledge to AI")
        add_text_btn = gr.Button("Add Text")
    
    send_btn.click(chat_interface, inputs=user_input, outputs=chatbot)
    add_text_btn.click(add_text_interface, inputs=add_text_input, outputs=gr.Textbox())

# Launch
if __name__ == "__main__":
    demo.launch()