Spaces:
Running
on
Zero
Running
on
Zero
avoid vram issues
Browse files
wan/modules/animate/preprocess/process_pipepline.py
CHANGED
|
@@ -1,585 +1,585 @@
|
|
| 1 |
-
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
| 2 |
-
import os
|
| 3 |
-
import numpy as np
|
| 4 |
-
import shutil
|
| 5 |
-
import torch
|
| 6 |
-
from diffusers import FluxKontextPipeline
|
| 7 |
-
import cv2
|
| 8 |
-
from loguru import logger
|
| 9 |
-
from PIL import Image
|
| 10 |
-
try:
|
| 11 |
-
import moviepy.editor as mpy
|
| 12 |
-
except:
|
| 13 |
-
import moviepy as mpy
|
| 14 |
-
|
| 15 |
-
from decord import VideoReader
|
| 16 |
-
from pose2d import Pose2d
|
| 17 |
-
from pose2d_utils import AAPoseMeta
|
| 18 |
-
from utils import resize_by_area, get_frame_indices, padding_resize, get_face_bboxes, get_aug_mask, get_mask_body_img
|
| 19 |
-
from human_visualization import draw_aapose_by_meta_new
|
| 20 |
-
from retarget_pose import get_retarget_pose
|
| 21 |
-
import sam2.modeling.sam.transformer as transformer
|
| 22 |
-
transformer.USE_FLASH_ATTN = True
|
| 23 |
-
transformer.MATH_KERNEL_ON =
|
| 24 |
-
transformer.OLD_GPU = False
|
| 25 |
-
from sam_utils import build_sam2_video_predictor
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
class ProcessPipeline():
|
| 29 |
-
def __init__(self, det_checkpoint_path, pose2d_checkpoint_path, sam_checkpoint_path, flux_kontext_path):
|
| 30 |
-
self.pose2d = Pose2d(checkpoint=pose2d_checkpoint_path, detector_checkpoint=det_checkpoint_path)
|
| 31 |
-
|
| 32 |
-
model_cfg = "sam2_hiera_l.yaml"
|
| 33 |
-
if sam_checkpoint_path is not None:
|
| 34 |
-
self.predictor = build_sam2_video_predictor(model_cfg, sam_checkpoint_path)
|
| 35 |
-
if flux_kontext_path is not None:
|
| 36 |
-
self.flux_kontext = FluxKontextPipeline.from_pretrained(flux_kontext_path, torch_dtype=torch.bfloat16).to("cuda")
|
| 37 |
-
|
| 38 |
-
def __call__(self, video_path, refer_image_path, output_path, resolution_area=[1280, 720], fps=30, iterations=3, k=7, w_len=1, h_len=1, retarget_flag=False, use_flux=False, replace_flag=False):
|
| 39 |
-
if replace_flag:
|
| 40 |
-
|
| 41 |
-
video_reader = VideoReader(video_path)
|
| 42 |
-
frame_num = len(video_reader)
|
| 43 |
-
print('frame_num: {}'.format(frame_num))
|
| 44 |
-
|
| 45 |
-
video_fps = video_reader.get_avg_fps()
|
| 46 |
-
print('video_fps: {}'.format(video_fps))
|
| 47 |
-
print('fps: {}'.format(fps))
|
| 48 |
-
|
| 49 |
-
# TODO: Maybe we can switch to PyAV later, which can get accurate frame num
|
| 50 |
-
duration = video_reader.get_frame_timestamp(-1)[-1]
|
| 51 |
-
expected_frame_num = int(duration * video_fps + 0.5)
|
| 52 |
-
ratio = abs((frame_num - expected_frame_num)/frame_num)
|
| 53 |
-
if ratio > 0.1:
|
| 54 |
-
print("Warning: The difference between the actual number of frames and the expected number of frames is two large")
|
| 55 |
-
frame_num = expected_frame_num
|
| 56 |
-
|
| 57 |
-
if fps == -1:
|
| 58 |
-
fps = video_fps
|
| 59 |
-
|
| 60 |
-
target_num = int(frame_num / video_fps * fps)
|
| 61 |
-
print('target_num: {}'.format(target_num))
|
| 62 |
-
idxs = get_frame_indices(frame_num, video_fps, target_num, fps)
|
| 63 |
-
frames = video_reader.get_batch(idxs).asnumpy()
|
| 64 |
-
|
| 65 |
-
frames = [resize_by_area(frame, resolution_area[0] * resolution_area[1], divisor=16) for frame in frames]
|
| 66 |
-
height, width = frames[0].shape[:2]
|
| 67 |
-
logger.info(f"Processing pose meta")
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
tpl_pose_metas = self.pose2d(frames)
|
| 71 |
-
|
| 72 |
-
face_images = []
|
| 73 |
-
for idx, meta in enumerate(tpl_pose_metas):
|
| 74 |
-
face_bbox_for_image = get_face_bboxes(meta['keypoints_face'][:, :2], scale=1.3,
|
| 75 |
-
image_shape=(frames[0].shape[0], frames[0].shape[1]))
|
| 76 |
-
|
| 77 |
-
x1, x2, y1, y2 = face_bbox_for_image
|
| 78 |
-
face_image = frames[idx][y1:y2, x1:x2]
|
| 79 |
-
face_image = cv2.resize(face_image, (512, 512))
|
| 80 |
-
face_images.append(face_image)
|
| 81 |
-
|
| 82 |
-
logger.info(f"Processing reference image: {refer_image_path}")
|
| 83 |
-
refer_img = cv2.imread(refer_image_path)
|
| 84 |
-
src_ref_path = os.path.join(output_path, 'src_ref.png')
|
| 85 |
-
shutil.copy(refer_image_path, src_ref_path)
|
| 86 |
-
refer_img = refer_img[..., ::-1]
|
| 87 |
-
|
| 88 |
-
refer_img = padding_resize(refer_img, height, width)
|
| 89 |
-
logger.info(f"Processing template video: {video_path}")
|
| 90 |
-
tpl_retarget_pose_metas = [AAPoseMeta.from_humanapi_meta(meta) for meta in tpl_pose_metas]
|
| 91 |
-
cond_images = []
|
| 92 |
-
|
| 93 |
-
for idx, meta in enumerate(tpl_retarget_pose_metas):
|
| 94 |
-
canvas = np.zeros_like(refer_img)
|
| 95 |
-
conditioning_image = draw_aapose_by_meta_new(canvas, meta)
|
| 96 |
-
cond_images.append(conditioning_image)
|
| 97 |
-
masks = self.get_mask_from_face_bbox(frames, 400, tpl_pose_metas)
|
| 98 |
-
|
| 99 |
-
bg_images = []
|
| 100 |
-
aug_masks = []
|
| 101 |
-
|
| 102 |
-
for frame, mask in zip(frames, masks):
|
| 103 |
-
if iterations > 0:
|
| 104 |
-
_, each_mask = get_mask_body_img(frame, mask, iterations=iterations, k=k)
|
| 105 |
-
each_aug_mask = get_aug_mask(each_mask, w_len=w_len, h_len=h_len)
|
| 106 |
-
else:
|
| 107 |
-
each_aug_mask = mask
|
| 108 |
-
|
| 109 |
-
each_bg_image = frame * (1 - each_aug_mask[:, :, None])
|
| 110 |
-
bg_images.append(each_bg_image)
|
| 111 |
-
aug_masks.append(each_aug_mask)
|
| 112 |
-
|
| 113 |
-
src_face_path = os.path.join(output_path, 'src_face.mp4')
|
| 114 |
-
mpy.ImageSequenceClip(face_images, fps=fps).write_videofile(src_face_path)
|
| 115 |
-
|
| 116 |
-
src_pose_path = os.path.join(output_path, 'src_pose.mp4')
|
| 117 |
-
mpy.ImageSequenceClip(cond_images, fps=fps).write_videofile(src_pose_path)
|
| 118 |
-
|
| 119 |
-
src_bg_path = os.path.join(output_path, 'src_bg.mp4')
|
| 120 |
-
mpy.ImageSequenceClip(bg_images, fps=fps).write_videofile(src_bg_path)
|
| 121 |
-
|
| 122 |
-
aug_masks_new = [np.stack([mask * 255, mask * 255, mask * 255], axis=2) for mask in aug_masks]
|
| 123 |
-
src_mask_path = os.path.join(output_path, 'src_mask.mp4')
|
| 124 |
-
mpy.ImageSequenceClip(aug_masks_new, fps=fps).write_videofile(src_mask_path)
|
| 125 |
-
return True
|
| 126 |
-
else:
|
| 127 |
-
logger.info(f"Processing reference image: {refer_image_path}")
|
| 128 |
-
refer_img = cv2.imread(refer_image_path)
|
| 129 |
-
src_ref_path = os.path.join(output_path, 'src_ref.png')
|
| 130 |
-
shutil.copy(refer_image_path, src_ref_path)
|
| 131 |
-
refer_img = refer_img[..., ::-1]
|
| 132 |
-
|
| 133 |
-
refer_img = resize_by_area(refer_img, resolution_area[0] * resolution_area[1], divisor=16)
|
| 134 |
-
|
| 135 |
-
refer_pose_meta = self.pose2d([refer_img])[0]
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
logger.info(f"Processing template video: {video_path}")
|
| 139 |
-
video_reader = VideoReader(video_path)
|
| 140 |
-
frame_num = len(video_reader)
|
| 141 |
-
print('frame_num: {}'.format(frame_num))
|
| 142 |
-
|
| 143 |
-
video_fps = video_reader.get_avg_fps()
|
| 144 |
-
print('video_fps: {}'.format(video_fps))
|
| 145 |
-
print('fps: {}'.format(fps))
|
| 146 |
-
|
| 147 |
-
# TODO: Maybe we can switch to PyAV later, which can get accurate frame num
|
| 148 |
-
duration = video_reader.get_frame_timestamp(-1)[-1]
|
| 149 |
-
expected_frame_num = int(duration * video_fps + 0.5)
|
| 150 |
-
ratio = abs((frame_num - expected_frame_num)/frame_num)
|
| 151 |
-
if ratio > 0.1:
|
| 152 |
-
print("Warning: The difference between the actual number of frames and the expected number of frames is two large")
|
| 153 |
-
frame_num = expected_frame_num
|
| 154 |
-
|
| 155 |
-
if fps == -1:
|
| 156 |
-
fps = video_fps
|
| 157 |
-
|
| 158 |
-
target_num = int(frame_num / video_fps * fps)
|
| 159 |
-
print('target_num: {}'.format(target_num))
|
| 160 |
-
idxs = get_frame_indices(frame_num, video_fps, target_num, fps)
|
| 161 |
-
frames = video_reader.get_batch(idxs).asnumpy()
|
| 162 |
-
|
| 163 |
-
logger.info(f"Processing pose meta")
|
| 164 |
-
|
| 165 |
-
tpl_pose_meta0 = self.pose2d(frames[:1])[0]
|
| 166 |
-
tpl_pose_metas = self.pose2d(frames)
|
| 167 |
-
|
| 168 |
-
face_images = []
|
| 169 |
-
for idx, meta in enumerate(tpl_pose_metas):
|
| 170 |
-
face_bbox_for_image = get_face_bboxes(meta['keypoints_face'][:, :2], scale=1.3,
|
| 171 |
-
image_shape=(frames[0].shape[0], frames[0].shape[1]))
|
| 172 |
-
|
| 173 |
-
x1, x2, y1, y2 = face_bbox_for_image
|
| 174 |
-
face_image = frames[idx][y1:y2, x1:x2]
|
| 175 |
-
face_image = cv2.resize(face_image, (512, 512))
|
| 176 |
-
face_images.append(face_image)
|
| 177 |
-
|
| 178 |
-
if retarget_flag:
|
| 179 |
-
if use_flux:
|
| 180 |
-
tpl_prompt, refer_prompt = self.get_editing_prompts(tpl_pose_metas, refer_pose_meta)
|
| 181 |
-
refer_input = Image.fromarray(refer_img)
|
| 182 |
-
refer_edit = self.flux_kontext(
|
| 183 |
-
image=refer_input,
|
| 184 |
-
height=refer_img.shape[0],
|
| 185 |
-
width=refer_img.shape[1],
|
| 186 |
-
prompt=refer_prompt,
|
| 187 |
-
guidance_scale=2.5,
|
| 188 |
-
num_inference_steps=28,
|
| 189 |
-
).images[0]
|
| 190 |
-
|
| 191 |
-
refer_edit = Image.fromarray(padding_resize(np.array(refer_edit), refer_img.shape[0], refer_img.shape[1]))
|
| 192 |
-
refer_edit_path = os.path.join(output_path, 'refer_edit.png')
|
| 193 |
-
refer_edit.save(refer_edit_path)
|
| 194 |
-
refer_edit_pose_meta = self.pose2d([np.array(refer_edit)])[0]
|
| 195 |
-
|
| 196 |
-
tpl_img = frames[1]
|
| 197 |
-
tpl_input = Image.fromarray(tpl_img)
|
| 198 |
-
|
| 199 |
-
tpl_edit = self.flux_kontext(
|
| 200 |
-
image=tpl_input,
|
| 201 |
-
height=tpl_img.shape[0],
|
| 202 |
-
width=tpl_img.shape[1],
|
| 203 |
-
prompt=tpl_prompt,
|
| 204 |
-
guidance_scale=2.5,
|
| 205 |
-
num_inference_steps=28,
|
| 206 |
-
).images[0]
|
| 207 |
-
|
| 208 |
-
tpl_edit = Image.fromarray(padding_resize(np.array(tpl_edit), tpl_img.shape[0], tpl_img.shape[1]))
|
| 209 |
-
tpl_edit_path = os.path.join(output_path, 'tpl_edit.png')
|
| 210 |
-
tpl_edit.save(tpl_edit_path)
|
| 211 |
-
tpl_edit_pose_meta0 = self.pose2d([np.array(tpl_edit)])[0]
|
| 212 |
-
tpl_retarget_pose_metas = get_retarget_pose(tpl_pose_meta0, refer_pose_meta, tpl_pose_metas, tpl_edit_pose_meta0, refer_edit_pose_meta)
|
| 213 |
-
else:
|
| 214 |
-
tpl_retarget_pose_metas = get_retarget_pose(tpl_pose_meta0, refer_pose_meta, tpl_pose_metas, None, None)
|
| 215 |
-
else:
|
| 216 |
-
tpl_retarget_pose_metas = [AAPoseMeta.from_humanapi_meta(meta) for meta in tpl_pose_metas]
|
| 217 |
-
|
| 218 |
-
cond_images = []
|
| 219 |
-
for idx, meta in enumerate(tpl_retarget_pose_metas):
|
| 220 |
-
if retarget_flag:
|
| 221 |
-
canvas = np.zeros_like(refer_img)
|
| 222 |
-
conditioning_image = draw_aapose_by_meta_new(canvas, meta)
|
| 223 |
-
else:
|
| 224 |
-
canvas = np.zeros_like(frames[0])
|
| 225 |
-
conditioning_image = draw_aapose_by_meta_new(canvas, meta)
|
| 226 |
-
conditioning_image = padding_resize(conditioning_image, refer_img.shape[0], refer_img.shape[1])
|
| 227 |
-
|
| 228 |
-
cond_images.append(conditioning_image)
|
| 229 |
-
|
| 230 |
-
src_face_path = os.path.join(output_path, 'src_face.mp4')
|
| 231 |
-
mpy.ImageSequenceClip(face_images, fps=fps).write_videofile(src_face_path)
|
| 232 |
-
|
| 233 |
-
src_pose_path = os.path.join(output_path, 'src_pose.mp4')
|
| 234 |
-
mpy.ImageSequenceClip(cond_images, fps=fps).write_videofile(src_pose_path)
|
| 235 |
-
return True
|
| 236 |
-
|
| 237 |
-
def get_editing_prompts(self, tpl_pose_metas, refer_pose_meta):
|
| 238 |
-
arm_visible = False
|
| 239 |
-
leg_visible = False
|
| 240 |
-
for tpl_pose_meta in tpl_pose_metas:
|
| 241 |
-
tpl_keypoints = tpl_pose_meta['keypoints_body']
|
| 242 |
-
if tpl_keypoints[3].all() != 0 or tpl_keypoints[4].all() != 0 or tpl_keypoints[6].all() != 0 or tpl_keypoints[7].all() != 0:
|
| 243 |
-
if (tpl_keypoints[3][0] <= 1 and tpl_keypoints[3][1] <= 1 and tpl_keypoints[3][2] >= 0.75) or (tpl_keypoints[4][0] <= 1 and tpl_keypoints[4][1] <= 1 and tpl_keypoints[4][2] >= 0.75) or \
|
| 244 |
-
(tpl_keypoints[6][0] <= 1 and tpl_keypoints[6][1] <= 1 and tpl_keypoints[6][2] >= 0.75) or (tpl_keypoints[7][0] <= 1 and tpl_keypoints[7][1] <= 1 and tpl_keypoints[7][2] >= 0.75):
|
| 245 |
-
arm_visible = True
|
| 246 |
-
if tpl_keypoints[9].all() != 0 or tpl_keypoints[12].all() != 0 or tpl_keypoints[10].all() != 0 or tpl_keypoints[13].all() != 0:
|
| 247 |
-
if (tpl_keypoints[9][0] <= 1 and tpl_keypoints[9][1] <= 1 and tpl_keypoints[9][2] >= 0.75) or (tpl_keypoints[12][0] <= 1 and tpl_keypoints[12][1] <= 1 and tpl_keypoints[12][2] >= 0.75) or \
|
| 248 |
-
(tpl_keypoints[10][0] <= 1 and tpl_keypoints[10][1] <= 1 and tpl_keypoints[10][2] >= 0.75) or (tpl_keypoints[13][0] <= 1 and tpl_keypoints[13][1] <= 1 and tpl_keypoints[13][2] >= 0.75):
|
| 249 |
-
leg_visible = True
|
| 250 |
-
if arm_visible and leg_visible:
|
| 251 |
-
break
|
| 252 |
-
|
| 253 |
-
if leg_visible:
|
| 254 |
-
if tpl_pose_meta['width'] > tpl_pose_meta['height']:
|
| 255 |
-
tpl_prompt = "Change the person to a standard T-pose (facing forward with arms extended). The person is standing. Feet and Hands are visible in the image."
|
| 256 |
-
else:
|
| 257 |
-
tpl_prompt = "Change the person to a standard pose with the face oriented forward and arms extending straight down by the sides. The person is standing. Feet and Hands are visible in the image."
|
| 258 |
-
|
| 259 |
-
if refer_pose_meta['width'] > refer_pose_meta['height']:
|
| 260 |
-
refer_prompt = "Change the person to a standard T-pose (facing forward with arms extended). The person is standing. Feet and Hands are visible in the image."
|
| 261 |
-
else:
|
| 262 |
-
refer_prompt = "Change the person to a standard pose with the face oriented forward and arms extending straight down by the sides. The person is standing. Feet and Hands are visible in the image."
|
| 263 |
-
elif arm_visible:
|
| 264 |
-
if tpl_pose_meta['width'] > tpl_pose_meta['height']:
|
| 265 |
-
tpl_prompt = "Change the person to a standard T-pose (facing forward with arms extended). Hands are visible in the image."
|
| 266 |
-
else:
|
| 267 |
-
tpl_prompt = "Change the person to a standard pose with the face oriented forward and arms extending straight down by the sides. Hands are visible in the image."
|
| 268 |
-
|
| 269 |
-
if refer_pose_meta['width'] > refer_pose_meta['height']:
|
| 270 |
-
refer_prompt = "Change the person to a standard T-pose (facing forward with arms extended). Hands are visible in the image."
|
| 271 |
-
else:
|
| 272 |
-
refer_prompt = "Change the person to a standard pose with the face oriented forward and arms extending straight down by the sides. Hands are visible in the image."
|
| 273 |
-
else:
|
| 274 |
-
tpl_prompt = "Change the person to face forward."
|
| 275 |
-
refer_prompt = "Change the person to face forward."
|
| 276 |
-
|
| 277 |
-
return tpl_prompt, refer_prompt
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
def get_mask(self, frames, th_step, kp2ds_all):
|
| 281 |
-
frame_num = len(frames)
|
| 282 |
-
if frame_num < th_step:
|
| 283 |
-
num_step = 1
|
| 284 |
-
else:
|
| 285 |
-
num_step = (frame_num + th_step) // th_step
|
| 286 |
-
|
| 287 |
-
all_mask = []
|
| 288 |
-
for index in range(num_step):
|
| 289 |
-
each_frames = frames[index * th_step:(index + 1) * th_step]
|
| 290 |
-
|
| 291 |
-
kp2ds = kp2ds_all[index * th_step:(index + 1) * th_step]
|
| 292 |
-
if len(each_frames) > 4:
|
| 293 |
-
key_frame_num = 4
|
| 294 |
-
elif 4 >= len(each_frames) > 0:
|
| 295 |
-
key_frame_num = 1
|
| 296 |
-
else:
|
| 297 |
-
continue
|
| 298 |
-
|
| 299 |
-
key_frame_step = len(kp2ds) // key_frame_num
|
| 300 |
-
key_frame_index_list = list(range(0, len(kp2ds), key_frame_step))
|
| 301 |
-
|
| 302 |
-
key_points_index = [0, 1, 2, 5, 8, 11, 10, 13]
|
| 303 |
-
key_frame_body_points_list = []
|
| 304 |
-
for key_frame_index in key_frame_index_list:
|
| 305 |
-
keypoints_body_list = []
|
| 306 |
-
body_key_points = kp2ds[key_frame_index]['keypoints_face']
|
| 307 |
-
for each_index in key_points_index:
|
| 308 |
-
each_keypoint = body_key_points[each_index]
|
| 309 |
-
if None is each_keypoint:
|
| 310 |
-
continue
|
| 311 |
-
keypoints_body_list.append(each_keypoint)
|
| 312 |
-
|
| 313 |
-
keypoints_body = np.array(keypoints_body_list)[:, :2]
|
| 314 |
-
wh = np.array([[kp2ds[0]['width'], kp2ds[0]['height']]])
|
| 315 |
-
points = (keypoints_body * wh).astype(np.int32)
|
| 316 |
-
key_frame_body_points_list.append(points)
|
| 317 |
-
|
| 318 |
-
inference_state = self.predictor.init_state_v2(frames=each_frames)
|
| 319 |
-
self.predictor.reset_state(inference_state)
|
| 320 |
-
ann_obj_id = 1
|
| 321 |
-
for ann_frame_idx, points in zip(key_frame_index_list, key_frame_body_points_list):
|
| 322 |
-
labels = np.array([1] * points.shape[0], np.int32)
|
| 323 |
-
_, out_obj_ids, out_mask_logits = self.predictor.add_new_points(
|
| 324 |
-
inference_state=inference_state,
|
| 325 |
-
frame_idx=ann_frame_idx,
|
| 326 |
-
obj_id=ann_obj_id,
|
| 327 |
-
points=points,
|
| 328 |
-
labels=labels,
|
| 329 |
-
)
|
| 330 |
-
|
| 331 |
-
video_segments = {}
|
| 332 |
-
for out_frame_idx, out_obj_ids, out_mask_logits in self.predictor.propagate_in_video(inference_state):
|
| 333 |
-
video_segments[out_frame_idx] = {
|
| 334 |
-
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
| 335 |
-
for i, out_obj_id in enumerate(out_obj_ids)
|
| 336 |
-
}
|
| 337 |
-
|
| 338 |
-
for out_frame_idx in range(len(video_segments)):
|
| 339 |
-
for out_obj_id, out_mask in video_segments[out_frame_idx].items():
|
| 340 |
-
out_mask = out_mask[0].astype(np.uint8)
|
| 341 |
-
all_mask.append(out_mask)
|
| 342 |
-
|
| 343 |
-
return all_mask
|
| 344 |
-
|
| 345 |
-
def convert_list_to_array(self, metas):
|
| 346 |
-
metas_list = []
|
| 347 |
-
for meta in metas:
|
| 348 |
-
for key, value in meta.items():
|
| 349 |
-
if type(value) is list:
|
| 350 |
-
value = np.array(value)
|
| 351 |
-
meta[key] = value
|
| 352 |
-
metas_list.append(meta)
|
| 353 |
-
return metas_list
|
| 354 |
-
|
| 355 |
-
def get_mask_from_face_bbox(self, frames, th_step, kp2ds_all):
|
| 356 |
-
"""
|
| 357 |
-
Build masks using a face bounding box per key frame (derived from keypoints_face),
|
| 358 |
-
then propagate with SAM2 across each chunk of frames.
|
| 359 |
-
"""
|
| 360 |
-
H, W = frames[0].shape[:2]
|
| 361 |
-
|
| 362 |
-
def _clip_box(x1, y1, x2, y2, W, H):
|
| 363 |
-
x1 = max(0, min(int(x1), W - 1))
|
| 364 |
-
x2 = max(0, min(int(x2), W - 1))
|
| 365 |
-
y1 = max(0, min(int(y1), H - 1))
|
| 366 |
-
y2 = max(0, min(int(y2), H - 1))
|
| 367 |
-
if x2 <= x1: x2 = min(W - 1, x1 + 1)
|
| 368 |
-
if y2 <= y1: y2 = min(H - 1, y1 + 1)
|
| 369 |
-
return x1, y1, x2, y2
|
| 370 |
-
|
| 371 |
-
frame_num = len(frames)
|
| 372 |
-
if frame_num < th_step:
|
| 373 |
-
num_step = 1
|
| 374 |
-
else:
|
| 375 |
-
num_step = (frame_num + th_step) // th_step
|
| 376 |
-
|
| 377 |
-
all_mask = []
|
| 378 |
-
|
| 379 |
-
for step_idx in range(num_step):
|
| 380 |
-
each_frames = frames[step_idx * th_step:(step_idx + 1) * th_step]
|
| 381 |
-
kp2ds = kp2ds_all[step_idx * th_step:(step_idx + 1) * th_step]
|
| 382 |
-
if len(each_frames) == 0:
|
| 383 |
-
continue
|
| 384 |
-
|
| 385 |
-
# pick a few key frames in this chunk
|
| 386 |
-
key_frame_num = 4 if len(each_frames) > 4 else 1
|
| 387 |
-
key_frame_step = max(1, len(kp2ds) // key_frame_num)
|
| 388 |
-
key_frame_index_list = list(range(0, len(kp2ds), key_frame_step))[:key_frame_num]
|
| 389 |
-
|
| 390 |
-
# compute face boxes on the selected key frames
|
| 391 |
-
key_frame_boxes = []
|
| 392 |
-
for kfi in key_frame_index_list:
|
| 393 |
-
meta = kp2ds[kfi]
|
| 394 |
-
# get_face_bboxes returns (x1, x2, y1, y2) in your code
|
| 395 |
-
x1, x2, y1, y2 = get_face_bboxes(
|
| 396 |
-
meta['keypoints_face'][:, :2],
|
| 397 |
-
scale=1.3,
|
| 398 |
-
image_shape=(H, W)
|
| 399 |
-
)
|
| 400 |
-
x1, y1, x2, y2 = _clip_box(x1, y1, x2, y2, W, H)
|
| 401 |
-
key_frame_boxes.append(np.array([x1, y1, x2, y2], dtype=np.float32))
|
| 402 |
-
|
| 403 |
-
# init SAM2 for this chunk
|
| 404 |
-
with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.float16):
|
| 405 |
-
inference_state = self.predictor.init_state_v2(frames=each_frames)
|
| 406 |
-
self.predictor.reset_state(inference_state)
|
| 407 |
-
ann_obj_id = 1
|
| 408 |
-
|
| 409 |
-
# seed with box prompts (preferred), else fall back to points
|
| 410 |
-
for ann_frame_idx, box_xyxy in zip(key_frame_index_list, key_frame_boxes):
|
| 411 |
-
used_box = False
|
| 412 |
-
try:
|
| 413 |
-
# If your predictor exposes a box API, this is ideal.
|
| 414 |
-
_ = self.predictor.add_new_box(
|
| 415 |
-
inference_state=inference_state,
|
| 416 |
-
frame_idx=ann_frame_idx,
|
| 417 |
-
obj_id=ann_obj_id,
|
| 418 |
-
box=box_xyxy[None, :] # shape (1, 4)
|
| 419 |
-
)
|
| 420 |
-
used_box = True
|
| 421 |
-
except Exception:
|
| 422 |
-
used_box = False
|
| 423 |
-
|
| 424 |
-
if not used_box:
|
| 425 |
-
# Fallback: sample a few positive points inside the box
|
| 426 |
-
x1, y1, x2, y2 = box_xyxy.astype(int)
|
| 427 |
-
cx, cy = (x1 + x2) // 2, (y1 + y2) // 2
|
| 428 |
-
pts = np.array([
|
| 429 |
-
[cx, cy],
|
| 430 |
-
[x1 + (x2 - x1) // 4, cy],
|
| 431 |
-
[x2 - (x2 - x1) // 4, cy],
|
| 432 |
-
[cx, y1 + (y2 - y1) // 4],
|
| 433 |
-
[cx, y2 - (y2 - y1) // 4],
|
| 434 |
-
], dtype=np.int32)
|
| 435 |
-
labels = np.ones(len(pts), dtype=np.int32) # 1 = positive
|
| 436 |
-
_ = self.predictor.add_new_points(
|
| 437 |
-
inference_state=inference_state,
|
| 438 |
-
frame_idx=ann_frame_idx,
|
| 439 |
-
obj_id=ann_obj_id,
|
| 440 |
-
points=pts,
|
| 441 |
-
labels=labels,
|
| 442 |
-
)
|
| 443 |
-
|
| 444 |
-
# propagate across the chunk
|
| 445 |
-
video_segments = {}
|
| 446 |
-
for out_frame_idx, out_obj_ids, out_mask_logits in self.predictor.propagate_in_video(inference_state):
|
| 447 |
-
video_segments[out_frame_idx] = {
|
| 448 |
-
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
| 449 |
-
for i, out_obj_id in enumerate(out_obj_ids)
|
| 450 |
-
}
|
| 451 |
-
|
| 452 |
-
# collect masks (single object id)
|
| 453 |
-
for out_frame_idx in range(len(video_segments)):
|
| 454 |
-
# (H, W) boolean/uint8
|
| 455 |
-
mask = next(iter(video_segments[out_frame_idx].values()))
|
| 456 |
-
mask = mask[0].astype(np.uint8)
|
| 457 |
-
all_mask.append(mask)
|
| 458 |
-
|
| 459 |
-
return all_mask
|
| 460 |
-
def get_mask_from_face_point(self, frames, th_step, kp2ds_all):
|
| 461 |
-
"""
|
| 462 |
-
Build masks using a single face *center point* per key frame,
|
| 463 |
-
then propagate with SAM2 across each chunk of frames.
|
| 464 |
-
"""
|
| 465 |
-
H, W = frames[0].shape[:2]
|
| 466 |
-
|
| 467 |
-
frame_num = len(frames)
|
| 468 |
-
num_step = 1 if frame_num < th_step else (frame_num + th_step) // th_step
|
| 469 |
-
|
| 470 |
-
all_mask = []
|
| 471 |
-
|
| 472 |
-
for step_idx in range(num_step):
|
| 473 |
-
each_frames = frames[step_idx * th_step:(step_idx + 1) * th_step]
|
| 474 |
-
kp2ds = kp2ds_all[step_idx * th_step:(step_idx + 1) * th_step]
|
| 475 |
-
if len(each_frames) == 0:
|
| 476 |
-
continue
|
| 477 |
-
|
| 478 |
-
# choose a few key frames to seed the object
|
| 479 |
-
key_frame_num = 1
|
| 480 |
-
key_frame_step = max(1, len(kp2ds) // key_frame_num)
|
| 481 |
-
key_frame_index_list = list(range(0, len(kp2ds), key_frame_step))[:key_frame_num]
|
| 482 |
-
|
| 483 |
-
# compute center point from face bbox for each selected key frame
|
| 484 |
-
center_pts = []
|
| 485 |
-
for kfi in key_frame_index_list:
|
| 486 |
-
meta = kp2ds[kfi]
|
| 487 |
-
# your helper returns (x1, x2, y1, y2)
|
| 488 |
-
x1, x2, y1, y2 = get_face_bboxes(
|
| 489 |
-
meta['keypoints_face'][:, :2],
|
| 490 |
-
scale=1.3,
|
| 491 |
-
image_shape=(H, W)
|
| 492 |
-
)
|
| 493 |
-
cx = (x1 + x2) // 2
|
| 494 |
-
cy = (y1 + y2) // 2
|
| 495 |
-
# clip just in case
|
| 496 |
-
cx = int(max(0, min(cx, W - 1)))
|
| 497 |
-
cy = int(max(0, min(cy, H - 1)))
|
| 498 |
-
center_pts.append(np.array([cx, cy], dtype=np.int32))
|
| 499 |
-
|
| 500 |
-
# init SAM2 for this chunk
|
| 501 |
-
inference_state = self.predictor.init_state_v2(frames=each_frames)
|
| 502 |
-
self.predictor.reset_state(inference_state)
|
| 503 |
-
ann_obj_id = 1
|
| 504 |
-
|
| 505 |
-
# seed each key frame with a single positive point at the face center
|
| 506 |
-
for ann_frame_idx, pt in zip(key_frame_index_list, center_pts):
|
| 507 |
-
pts = pt[None, :] # shape (1, 2)
|
| 508 |
-
labels = np.ones(1, dtype=np.int32) # 1 = positive
|
| 509 |
-
_ = self.predictor.add_new_points(
|
| 510 |
-
inference_state=inference_state,
|
| 511 |
-
frame_idx=ann_frame_idx,
|
| 512 |
-
obj_id=ann_obj_id,
|
| 513 |
-
points=pts,
|
| 514 |
-
labels=labels,
|
| 515 |
-
)
|
| 516 |
-
|
| 517 |
-
# propagate across the chunk
|
| 518 |
-
video_segments = {}
|
| 519 |
-
for out_frame_idx, out_obj_ids, out_mask_logits in self.predictor.propagate_in_video(inference_state):
|
| 520 |
-
video_segments[out_frame_idx] = {
|
| 521 |
-
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
| 522 |
-
for i, out_obj_id in enumerate(out_obj_ids)
|
| 523 |
-
}
|
| 524 |
-
|
| 525 |
-
# collect masks (single object id)
|
| 526 |
-
for out_frame_idx in range(len(video_segments)):
|
| 527 |
-
mask = next(iter(video_segments[out_frame_idx].values()))
|
| 528 |
-
mask = mask[0].astype(np.uint8)
|
| 529 |
-
all_mask.append(mask)
|
| 530 |
-
|
| 531 |
-
return all_mask
|
| 532 |
-
|
| 533 |
-
def get_face_bbox_masks(self, frames, kp2ds_all, scale=1.3, feather_px=0, keep_soft=False):
|
| 534 |
-
"""
|
| 535 |
-
Create a per-frame mask that's simply the face bounding box.
|
| 536 |
-
- scale: bbox scale factor used by get_face_bboxes
|
| 537 |
-
- feather_px: optional Gaussian blur in pixels to feather edges
|
| 538 |
-
- keep_soft: if True, keep float [0,1] soft mask (after blur); else binarize to {0,1}
|
| 539 |
-
"""
|
| 540 |
-
H, W = frames[0].shape[:2]
|
| 541 |
-
|
| 542 |
-
def _clip_box(x1, y1, x2, y2):
|
| 543 |
-
x1 = max(0, min(int(x1), W - 1))
|
| 544 |
-
x2 = max(0, min(int(x2), W - 1))
|
| 545 |
-
y1 = max(0, min(int(y1), H - 1))
|
| 546 |
-
y2 = max(0, min(int(y2), H - 1))
|
| 547 |
-
if x2 <= x1: x2 = min(W - 1, x1 + 1)
|
| 548 |
-
if y2 <= y1: y2 = min(H - 1, y1 + 1)
|
| 549 |
-
return x1, y1, x2, y2
|
| 550 |
-
|
| 551 |
-
masks = []
|
| 552 |
-
last_box = None
|
| 553 |
-
for meta in kp2ds_all:
|
| 554 |
-
# get_face_bboxes returns (x1, x2, y1, y2)
|
| 555 |
-
try:
|
| 556 |
-
x1, x2, y1, y2 = get_face_bboxes(
|
| 557 |
-
meta['keypoints_face'][:, :2],
|
| 558 |
-
scale=scale,
|
| 559 |
-
image_shape=(H, W)
|
| 560 |
-
)
|
| 561 |
-
x1, y1, x2, y2 = _clip_box(x1, y1, x2, y2)
|
| 562 |
-
last_box = (x1, y1, x2, y2)
|
| 563 |
-
except Exception:
|
| 564 |
-
# fallback: reuse last seen box to avoid holes
|
| 565 |
-
if last_box is None:
|
| 566 |
-
# no detection yet: push empty mask
|
| 567 |
-
masks.append(np.zeros((H, W), dtype=np.uint8))
|
| 568 |
-
continue
|
| 569 |
-
x1, y1, x2, y2 = last_box
|
| 570 |
-
|
| 571 |
-
m = np.zeros((H, W), dtype=np.float32)
|
| 572 |
-
m[y1:y2, x1:x2] = 1.0
|
| 573 |
-
|
| 574 |
-
if feather_px and feather_px > 0:
|
| 575 |
-
# kernel size must be odd and >= 3
|
| 576 |
-
k = max(3, int(feather_px) | 1)
|
| 577 |
-
m = cv2.GaussianBlur(m, (k, k), 0)
|
| 578 |
-
|
| 579 |
-
if keep_soft:
|
| 580 |
-
masks.append(m) # float [0,1]
|
| 581 |
-
else:
|
| 582 |
-
masks.append((m >= 0.5).astype(np.uint8)) # hard {0,1}
|
| 583 |
-
|
| 584 |
-
return masks
|
| 585 |
-
|
|
|
|
| 1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
| 2 |
+
import os
|
| 3 |
+
import numpy as np
|
| 4 |
+
import shutil
|
| 5 |
+
import torch
|
| 6 |
+
from diffusers import FluxKontextPipeline
|
| 7 |
+
import cv2
|
| 8 |
+
from loguru import logger
|
| 9 |
+
from PIL import Image
|
| 10 |
+
try:
|
| 11 |
+
import moviepy.editor as mpy
|
| 12 |
+
except:
|
| 13 |
+
import moviepy as mpy
|
| 14 |
+
|
| 15 |
+
from decord import VideoReader
|
| 16 |
+
from pose2d import Pose2d
|
| 17 |
+
from pose2d_utils import AAPoseMeta
|
| 18 |
+
from utils import resize_by_area, get_frame_indices, padding_resize, get_face_bboxes, get_aug_mask, get_mask_body_img
|
| 19 |
+
from human_visualization import draw_aapose_by_meta_new
|
| 20 |
+
from retarget_pose import get_retarget_pose
|
| 21 |
+
import sam2.modeling.sam.transformer as transformer
|
| 22 |
+
transformer.USE_FLASH_ATTN = True
|
| 23 |
+
transformer.MATH_KERNEL_ON = True
|
| 24 |
+
transformer.OLD_GPU = False
|
| 25 |
+
from sam_utils import build_sam2_video_predictor
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class ProcessPipeline():
|
| 29 |
+
def __init__(self, det_checkpoint_path, pose2d_checkpoint_path, sam_checkpoint_path, flux_kontext_path):
|
| 30 |
+
self.pose2d = Pose2d(checkpoint=pose2d_checkpoint_path, detector_checkpoint=det_checkpoint_path)
|
| 31 |
+
|
| 32 |
+
model_cfg = "sam2_hiera_l.yaml"
|
| 33 |
+
if sam_checkpoint_path is not None:
|
| 34 |
+
self.predictor = build_sam2_video_predictor(model_cfg, sam_checkpoint_path)
|
| 35 |
+
if flux_kontext_path is not None:
|
| 36 |
+
self.flux_kontext = FluxKontextPipeline.from_pretrained(flux_kontext_path, torch_dtype=torch.bfloat16).to("cuda")
|
| 37 |
+
|
| 38 |
+
def __call__(self, video_path, refer_image_path, output_path, resolution_area=[1280, 720], fps=30, iterations=3, k=7, w_len=1, h_len=1, retarget_flag=False, use_flux=False, replace_flag=False):
|
| 39 |
+
if replace_flag:
|
| 40 |
+
|
| 41 |
+
video_reader = VideoReader(video_path)
|
| 42 |
+
frame_num = len(video_reader)
|
| 43 |
+
print('frame_num: {}'.format(frame_num))
|
| 44 |
+
|
| 45 |
+
video_fps = video_reader.get_avg_fps()
|
| 46 |
+
print('video_fps: {}'.format(video_fps))
|
| 47 |
+
print('fps: {}'.format(fps))
|
| 48 |
+
|
| 49 |
+
# TODO: Maybe we can switch to PyAV later, which can get accurate frame num
|
| 50 |
+
duration = video_reader.get_frame_timestamp(-1)[-1]
|
| 51 |
+
expected_frame_num = int(duration * video_fps + 0.5)
|
| 52 |
+
ratio = abs((frame_num - expected_frame_num)/frame_num)
|
| 53 |
+
if ratio > 0.1:
|
| 54 |
+
print("Warning: The difference between the actual number of frames and the expected number of frames is two large")
|
| 55 |
+
frame_num = expected_frame_num
|
| 56 |
+
|
| 57 |
+
if fps == -1:
|
| 58 |
+
fps = video_fps
|
| 59 |
+
|
| 60 |
+
target_num = int(frame_num / video_fps * fps)
|
| 61 |
+
print('target_num: {}'.format(target_num))
|
| 62 |
+
idxs = get_frame_indices(frame_num, video_fps, target_num, fps)
|
| 63 |
+
frames = video_reader.get_batch(idxs).asnumpy()
|
| 64 |
+
|
| 65 |
+
frames = [resize_by_area(frame, resolution_area[0] * resolution_area[1], divisor=16) for frame in frames]
|
| 66 |
+
height, width = frames[0].shape[:2]
|
| 67 |
+
logger.info(f"Processing pose meta")
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
tpl_pose_metas = self.pose2d(frames)
|
| 71 |
+
|
| 72 |
+
face_images = []
|
| 73 |
+
for idx, meta in enumerate(tpl_pose_metas):
|
| 74 |
+
face_bbox_for_image = get_face_bboxes(meta['keypoints_face'][:, :2], scale=1.3,
|
| 75 |
+
image_shape=(frames[0].shape[0], frames[0].shape[1]))
|
| 76 |
+
|
| 77 |
+
x1, x2, y1, y2 = face_bbox_for_image
|
| 78 |
+
face_image = frames[idx][y1:y2, x1:x2]
|
| 79 |
+
face_image = cv2.resize(face_image, (512, 512))
|
| 80 |
+
face_images.append(face_image)
|
| 81 |
+
|
| 82 |
+
logger.info(f"Processing reference image: {refer_image_path}")
|
| 83 |
+
refer_img = cv2.imread(refer_image_path)
|
| 84 |
+
src_ref_path = os.path.join(output_path, 'src_ref.png')
|
| 85 |
+
shutil.copy(refer_image_path, src_ref_path)
|
| 86 |
+
refer_img = refer_img[..., ::-1]
|
| 87 |
+
|
| 88 |
+
refer_img = padding_resize(refer_img, height, width)
|
| 89 |
+
logger.info(f"Processing template video: {video_path}")
|
| 90 |
+
tpl_retarget_pose_metas = [AAPoseMeta.from_humanapi_meta(meta) for meta in tpl_pose_metas]
|
| 91 |
+
cond_images = []
|
| 92 |
+
|
| 93 |
+
for idx, meta in enumerate(tpl_retarget_pose_metas):
|
| 94 |
+
canvas = np.zeros_like(refer_img)
|
| 95 |
+
conditioning_image = draw_aapose_by_meta_new(canvas, meta)
|
| 96 |
+
cond_images.append(conditioning_image)
|
| 97 |
+
masks = self.get_mask_from_face_bbox(frames, 400, tpl_pose_metas)
|
| 98 |
+
|
| 99 |
+
bg_images = []
|
| 100 |
+
aug_masks = []
|
| 101 |
+
|
| 102 |
+
for frame, mask in zip(frames, masks):
|
| 103 |
+
if iterations > 0:
|
| 104 |
+
_, each_mask = get_mask_body_img(frame, mask, iterations=iterations, k=k)
|
| 105 |
+
each_aug_mask = get_aug_mask(each_mask, w_len=w_len, h_len=h_len)
|
| 106 |
+
else:
|
| 107 |
+
each_aug_mask = mask
|
| 108 |
+
|
| 109 |
+
each_bg_image = frame * (1 - each_aug_mask[:, :, None])
|
| 110 |
+
bg_images.append(each_bg_image)
|
| 111 |
+
aug_masks.append(each_aug_mask)
|
| 112 |
+
|
| 113 |
+
src_face_path = os.path.join(output_path, 'src_face.mp4')
|
| 114 |
+
mpy.ImageSequenceClip(face_images, fps=fps).write_videofile(src_face_path)
|
| 115 |
+
|
| 116 |
+
src_pose_path = os.path.join(output_path, 'src_pose.mp4')
|
| 117 |
+
mpy.ImageSequenceClip(cond_images, fps=fps).write_videofile(src_pose_path)
|
| 118 |
+
|
| 119 |
+
src_bg_path = os.path.join(output_path, 'src_bg.mp4')
|
| 120 |
+
mpy.ImageSequenceClip(bg_images, fps=fps).write_videofile(src_bg_path)
|
| 121 |
+
|
| 122 |
+
aug_masks_new = [np.stack([mask * 255, mask * 255, mask * 255], axis=2) for mask in aug_masks]
|
| 123 |
+
src_mask_path = os.path.join(output_path, 'src_mask.mp4')
|
| 124 |
+
mpy.ImageSequenceClip(aug_masks_new, fps=fps).write_videofile(src_mask_path)
|
| 125 |
+
return True
|
| 126 |
+
else:
|
| 127 |
+
logger.info(f"Processing reference image: {refer_image_path}")
|
| 128 |
+
refer_img = cv2.imread(refer_image_path)
|
| 129 |
+
src_ref_path = os.path.join(output_path, 'src_ref.png')
|
| 130 |
+
shutil.copy(refer_image_path, src_ref_path)
|
| 131 |
+
refer_img = refer_img[..., ::-1]
|
| 132 |
+
|
| 133 |
+
refer_img = resize_by_area(refer_img, resolution_area[0] * resolution_area[1], divisor=16)
|
| 134 |
+
|
| 135 |
+
refer_pose_meta = self.pose2d([refer_img])[0]
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
logger.info(f"Processing template video: {video_path}")
|
| 139 |
+
video_reader = VideoReader(video_path)
|
| 140 |
+
frame_num = len(video_reader)
|
| 141 |
+
print('frame_num: {}'.format(frame_num))
|
| 142 |
+
|
| 143 |
+
video_fps = video_reader.get_avg_fps()
|
| 144 |
+
print('video_fps: {}'.format(video_fps))
|
| 145 |
+
print('fps: {}'.format(fps))
|
| 146 |
+
|
| 147 |
+
# TODO: Maybe we can switch to PyAV later, which can get accurate frame num
|
| 148 |
+
duration = video_reader.get_frame_timestamp(-1)[-1]
|
| 149 |
+
expected_frame_num = int(duration * video_fps + 0.5)
|
| 150 |
+
ratio = abs((frame_num - expected_frame_num)/frame_num)
|
| 151 |
+
if ratio > 0.1:
|
| 152 |
+
print("Warning: The difference between the actual number of frames and the expected number of frames is two large")
|
| 153 |
+
frame_num = expected_frame_num
|
| 154 |
+
|
| 155 |
+
if fps == -1:
|
| 156 |
+
fps = video_fps
|
| 157 |
+
|
| 158 |
+
target_num = int(frame_num / video_fps * fps)
|
| 159 |
+
print('target_num: {}'.format(target_num))
|
| 160 |
+
idxs = get_frame_indices(frame_num, video_fps, target_num, fps)
|
| 161 |
+
frames = video_reader.get_batch(idxs).asnumpy()
|
| 162 |
+
|
| 163 |
+
logger.info(f"Processing pose meta")
|
| 164 |
+
|
| 165 |
+
tpl_pose_meta0 = self.pose2d(frames[:1])[0]
|
| 166 |
+
tpl_pose_metas = self.pose2d(frames)
|
| 167 |
+
|
| 168 |
+
face_images = []
|
| 169 |
+
for idx, meta in enumerate(tpl_pose_metas):
|
| 170 |
+
face_bbox_for_image = get_face_bboxes(meta['keypoints_face'][:, :2], scale=1.3,
|
| 171 |
+
image_shape=(frames[0].shape[0], frames[0].shape[1]))
|
| 172 |
+
|
| 173 |
+
x1, x2, y1, y2 = face_bbox_for_image
|
| 174 |
+
face_image = frames[idx][y1:y2, x1:x2]
|
| 175 |
+
face_image = cv2.resize(face_image, (512, 512))
|
| 176 |
+
face_images.append(face_image)
|
| 177 |
+
|
| 178 |
+
if retarget_flag:
|
| 179 |
+
if use_flux:
|
| 180 |
+
tpl_prompt, refer_prompt = self.get_editing_prompts(tpl_pose_metas, refer_pose_meta)
|
| 181 |
+
refer_input = Image.fromarray(refer_img)
|
| 182 |
+
refer_edit = self.flux_kontext(
|
| 183 |
+
image=refer_input,
|
| 184 |
+
height=refer_img.shape[0],
|
| 185 |
+
width=refer_img.shape[1],
|
| 186 |
+
prompt=refer_prompt,
|
| 187 |
+
guidance_scale=2.5,
|
| 188 |
+
num_inference_steps=28,
|
| 189 |
+
).images[0]
|
| 190 |
+
|
| 191 |
+
refer_edit = Image.fromarray(padding_resize(np.array(refer_edit), refer_img.shape[0], refer_img.shape[1]))
|
| 192 |
+
refer_edit_path = os.path.join(output_path, 'refer_edit.png')
|
| 193 |
+
refer_edit.save(refer_edit_path)
|
| 194 |
+
refer_edit_pose_meta = self.pose2d([np.array(refer_edit)])[0]
|
| 195 |
+
|
| 196 |
+
tpl_img = frames[1]
|
| 197 |
+
tpl_input = Image.fromarray(tpl_img)
|
| 198 |
+
|
| 199 |
+
tpl_edit = self.flux_kontext(
|
| 200 |
+
image=tpl_input,
|
| 201 |
+
height=tpl_img.shape[0],
|
| 202 |
+
width=tpl_img.shape[1],
|
| 203 |
+
prompt=tpl_prompt,
|
| 204 |
+
guidance_scale=2.5,
|
| 205 |
+
num_inference_steps=28,
|
| 206 |
+
).images[0]
|
| 207 |
+
|
| 208 |
+
tpl_edit = Image.fromarray(padding_resize(np.array(tpl_edit), tpl_img.shape[0], tpl_img.shape[1]))
|
| 209 |
+
tpl_edit_path = os.path.join(output_path, 'tpl_edit.png')
|
| 210 |
+
tpl_edit.save(tpl_edit_path)
|
| 211 |
+
tpl_edit_pose_meta0 = self.pose2d([np.array(tpl_edit)])[0]
|
| 212 |
+
tpl_retarget_pose_metas = get_retarget_pose(tpl_pose_meta0, refer_pose_meta, tpl_pose_metas, tpl_edit_pose_meta0, refer_edit_pose_meta)
|
| 213 |
+
else:
|
| 214 |
+
tpl_retarget_pose_metas = get_retarget_pose(tpl_pose_meta0, refer_pose_meta, tpl_pose_metas, None, None)
|
| 215 |
+
else:
|
| 216 |
+
tpl_retarget_pose_metas = [AAPoseMeta.from_humanapi_meta(meta) for meta in tpl_pose_metas]
|
| 217 |
+
|
| 218 |
+
cond_images = []
|
| 219 |
+
for idx, meta in enumerate(tpl_retarget_pose_metas):
|
| 220 |
+
if retarget_flag:
|
| 221 |
+
canvas = np.zeros_like(refer_img)
|
| 222 |
+
conditioning_image = draw_aapose_by_meta_new(canvas, meta)
|
| 223 |
+
else:
|
| 224 |
+
canvas = np.zeros_like(frames[0])
|
| 225 |
+
conditioning_image = draw_aapose_by_meta_new(canvas, meta)
|
| 226 |
+
conditioning_image = padding_resize(conditioning_image, refer_img.shape[0], refer_img.shape[1])
|
| 227 |
+
|
| 228 |
+
cond_images.append(conditioning_image)
|
| 229 |
+
|
| 230 |
+
src_face_path = os.path.join(output_path, 'src_face.mp4')
|
| 231 |
+
mpy.ImageSequenceClip(face_images, fps=fps).write_videofile(src_face_path)
|
| 232 |
+
|
| 233 |
+
src_pose_path = os.path.join(output_path, 'src_pose.mp4')
|
| 234 |
+
mpy.ImageSequenceClip(cond_images, fps=fps).write_videofile(src_pose_path)
|
| 235 |
+
return True
|
| 236 |
+
|
| 237 |
+
def get_editing_prompts(self, tpl_pose_metas, refer_pose_meta):
|
| 238 |
+
arm_visible = False
|
| 239 |
+
leg_visible = False
|
| 240 |
+
for tpl_pose_meta in tpl_pose_metas:
|
| 241 |
+
tpl_keypoints = tpl_pose_meta['keypoints_body']
|
| 242 |
+
if tpl_keypoints[3].all() != 0 or tpl_keypoints[4].all() != 0 or tpl_keypoints[6].all() != 0 or tpl_keypoints[7].all() != 0:
|
| 243 |
+
if (tpl_keypoints[3][0] <= 1 and tpl_keypoints[3][1] <= 1 and tpl_keypoints[3][2] >= 0.75) or (tpl_keypoints[4][0] <= 1 and tpl_keypoints[4][1] <= 1 and tpl_keypoints[4][2] >= 0.75) or \
|
| 244 |
+
(tpl_keypoints[6][0] <= 1 and tpl_keypoints[6][1] <= 1 and tpl_keypoints[6][2] >= 0.75) or (tpl_keypoints[7][0] <= 1 and tpl_keypoints[7][1] <= 1 and tpl_keypoints[7][2] >= 0.75):
|
| 245 |
+
arm_visible = True
|
| 246 |
+
if tpl_keypoints[9].all() != 0 or tpl_keypoints[12].all() != 0 or tpl_keypoints[10].all() != 0 or tpl_keypoints[13].all() != 0:
|
| 247 |
+
if (tpl_keypoints[9][0] <= 1 and tpl_keypoints[9][1] <= 1 and tpl_keypoints[9][2] >= 0.75) or (tpl_keypoints[12][0] <= 1 and tpl_keypoints[12][1] <= 1 and tpl_keypoints[12][2] >= 0.75) or \
|
| 248 |
+
(tpl_keypoints[10][0] <= 1 and tpl_keypoints[10][1] <= 1 and tpl_keypoints[10][2] >= 0.75) or (tpl_keypoints[13][0] <= 1 and tpl_keypoints[13][1] <= 1 and tpl_keypoints[13][2] >= 0.75):
|
| 249 |
+
leg_visible = True
|
| 250 |
+
if arm_visible and leg_visible:
|
| 251 |
+
break
|
| 252 |
+
|
| 253 |
+
if leg_visible:
|
| 254 |
+
if tpl_pose_meta['width'] > tpl_pose_meta['height']:
|
| 255 |
+
tpl_prompt = "Change the person to a standard T-pose (facing forward with arms extended). The person is standing. Feet and Hands are visible in the image."
|
| 256 |
+
else:
|
| 257 |
+
tpl_prompt = "Change the person to a standard pose with the face oriented forward and arms extending straight down by the sides. The person is standing. Feet and Hands are visible in the image."
|
| 258 |
+
|
| 259 |
+
if refer_pose_meta['width'] > refer_pose_meta['height']:
|
| 260 |
+
refer_prompt = "Change the person to a standard T-pose (facing forward with arms extended). The person is standing. Feet and Hands are visible in the image."
|
| 261 |
+
else:
|
| 262 |
+
refer_prompt = "Change the person to a standard pose with the face oriented forward and arms extending straight down by the sides. The person is standing. Feet and Hands are visible in the image."
|
| 263 |
+
elif arm_visible:
|
| 264 |
+
if tpl_pose_meta['width'] > tpl_pose_meta['height']:
|
| 265 |
+
tpl_prompt = "Change the person to a standard T-pose (facing forward with arms extended). Hands are visible in the image."
|
| 266 |
+
else:
|
| 267 |
+
tpl_prompt = "Change the person to a standard pose with the face oriented forward and arms extending straight down by the sides. Hands are visible in the image."
|
| 268 |
+
|
| 269 |
+
if refer_pose_meta['width'] > refer_pose_meta['height']:
|
| 270 |
+
refer_prompt = "Change the person to a standard T-pose (facing forward with arms extended). Hands are visible in the image."
|
| 271 |
+
else:
|
| 272 |
+
refer_prompt = "Change the person to a standard pose with the face oriented forward and arms extending straight down by the sides. Hands are visible in the image."
|
| 273 |
+
else:
|
| 274 |
+
tpl_prompt = "Change the person to face forward."
|
| 275 |
+
refer_prompt = "Change the person to face forward."
|
| 276 |
+
|
| 277 |
+
return tpl_prompt, refer_prompt
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
def get_mask(self, frames, th_step, kp2ds_all):
|
| 281 |
+
frame_num = len(frames)
|
| 282 |
+
if frame_num < th_step:
|
| 283 |
+
num_step = 1
|
| 284 |
+
else:
|
| 285 |
+
num_step = (frame_num + th_step) // th_step
|
| 286 |
+
|
| 287 |
+
all_mask = []
|
| 288 |
+
for index in range(num_step):
|
| 289 |
+
each_frames = frames[index * th_step:(index + 1) * th_step]
|
| 290 |
+
|
| 291 |
+
kp2ds = kp2ds_all[index * th_step:(index + 1) * th_step]
|
| 292 |
+
if len(each_frames) > 4:
|
| 293 |
+
key_frame_num = 4
|
| 294 |
+
elif 4 >= len(each_frames) > 0:
|
| 295 |
+
key_frame_num = 1
|
| 296 |
+
else:
|
| 297 |
+
continue
|
| 298 |
+
|
| 299 |
+
key_frame_step = len(kp2ds) // key_frame_num
|
| 300 |
+
key_frame_index_list = list(range(0, len(kp2ds), key_frame_step))
|
| 301 |
+
|
| 302 |
+
key_points_index = [0, 1, 2, 5, 8, 11, 10, 13]
|
| 303 |
+
key_frame_body_points_list = []
|
| 304 |
+
for key_frame_index in key_frame_index_list:
|
| 305 |
+
keypoints_body_list = []
|
| 306 |
+
body_key_points = kp2ds[key_frame_index]['keypoints_face']
|
| 307 |
+
for each_index in key_points_index:
|
| 308 |
+
each_keypoint = body_key_points[each_index]
|
| 309 |
+
if None is each_keypoint:
|
| 310 |
+
continue
|
| 311 |
+
keypoints_body_list.append(each_keypoint)
|
| 312 |
+
|
| 313 |
+
keypoints_body = np.array(keypoints_body_list)[:, :2]
|
| 314 |
+
wh = np.array([[kp2ds[0]['width'], kp2ds[0]['height']]])
|
| 315 |
+
points = (keypoints_body * wh).astype(np.int32)
|
| 316 |
+
key_frame_body_points_list.append(points)
|
| 317 |
+
|
| 318 |
+
inference_state = self.predictor.init_state_v2(frames=each_frames)
|
| 319 |
+
self.predictor.reset_state(inference_state)
|
| 320 |
+
ann_obj_id = 1
|
| 321 |
+
for ann_frame_idx, points in zip(key_frame_index_list, key_frame_body_points_list):
|
| 322 |
+
labels = np.array([1] * points.shape[0], np.int32)
|
| 323 |
+
_, out_obj_ids, out_mask_logits = self.predictor.add_new_points(
|
| 324 |
+
inference_state=inference_state,
|
| 325 |
+
frame_idx=ann_frame_idx,
|
| 326 |
+
obj_id=ann_obj_id,
|
| 327 |
+
points=points,
|
| 328 |
+
labels=labels,
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
video_segments = {}
|
| 332 |
+
for out_frame_idx, out_obj_ids, out_mask_logits in self.predictor.propagate_in_video(inference_state):
|
| 333 |
+
video_segments[out_frame_idx] = {
|
| 334 |
+
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
| 335 |
+
for i, out_obj_id in enumerate(out_obj_ids)
|
| 336 |
+
}
|
| 337 |
+
|
| 338 |
+
for out_frame_idx in range(len(video_segments)):
|
| 339 |
+
for out_obj_id, out_mask in video_segments[out_frame_idx].items():
|
| 340 |
+
out_mask = out_mask[0].astype(np.uint8)
|
| 341 |
+
all_mask.append(out_mask)
|
| 342 |
+
|
| 343 |
+
return all_mask
|
| 344 |
+
|
| 345 |
+
def convert_list_to_array(self, metas):
|
| 346 |
+
metas_list = []
|
| 347 |
+
for meta in metas:
|
| 348 |
+
for key, value in meta.items():
|
| 349 |
+
if type(value) is list:
|
| 350 |
+
value = np.array(value)
|
| 351 |
+
meta[key] = value
|
| 352 |
+
metas_list.append(meta)
|
| 353 |
+
return metas_list
|
| 354 |
+
|
| 355 |
+
def get_mask_from_face_bbox(self, frames, th_step, kp2ds_all):
|
| 356 |
+
"""
|
| 357 |
+
Build masks using a face bounding box per key frame (derived from keypoints_face),
|
| 358 |
+
then propagate with SAM2 across each chunk of frames.
|
| 359 |
+
"""
|
| 360 |
+
H, W = frames[0].shape[:2]
|
| 361 |
+
|
| 362 |
+
def _clip_box(x1, y1, x2, y2, W, H):
|
| 363 |
+
x1 = max(0, min(int(x1), W - 1))
|
| 364 |
+
x2 = max(0, min(int(x2), W - 1))
|
| 365 |
+
y1 = max(0, min(int(y1), H - 1))
|
| 366 |
+
y2 = max(0, min(int(y2), H - 1))
|
| 367 |
+
if x2 <= x1: x2 = min(W - 1, x1 + 1)
|
| 368 |
+
if y2 <= y1: y2 = min(H - 1, y1 + 1)
|
| 369 |
+
return x1, y1, x2, y2
|
| 370 |
+
|
| 371 |
+
frame_num = len(frames)
|
| 372 |
+
if frame_num < th_step:
|
| 373 |
+
num_step = 1
|
| 374 |
+
else:
|
| 375 |
+
num_step = (frame_num + th_step) // th_step
|
| 376 |
+
|
| 377 |
+
all_mask = []
|
| 378 |
+
|
| 379 |
+
for step_idx in range(num_step):
|
| 380 |
+
each_frames = frames[step_idx * th_step:(step_idx + 1) * th_step]
|
| 381 |
+
kp2ds = kp2ds_all[step_idx * th_step:(step_idx + 1) * th_step]
|
| 382 |
+
if len(each_frames) == 0:
|
| 383 |
+
continue
|
| 384 |
+
|
| 385 |
+
# pick a few key frames in this chunk
|
| 386 |
+
key_frame_num = 4 if len(each_frames) > 4 else 1
|
| 387 |
+
key_frame_step = max(1, len(kp2ds) // key_frame_num)
|
| 388 |
+
key_frame_index_list = list(range(0, len(kp2ds), key_frame_step))[:key_frame_num]
|
| 389 |
+
|
| 390 |
+
# compute face boxes on the selected key frames
|
| 391 |
+
key_frame_boxes = []
|
| 392 |
+
for kfi in key_frame_index_list:
|
| 393 |
+
meta = kp2ds[kfi]
|
| 394 |
+
# get_face_bboxes returns (x1, x2, y1, y2) in your code
|
| 395 |
+
x1, x2, y1, y2 = get_face_bboxes(
|
| 396 |
+
meta['keypoints_face'][:, :2],
|
| 397 |
+
scale=1.3,
|
| 398 |
+
image_shape=(H, W)
|
| 399 |
+
)
|
| 400 |
+
x1, y1, x2, y2 = _clip_box(x1, y1, x2, y2, W, H)
|
| 401 |
+
key_frame_boxes.append(np.array([x1, y1, x2, y2], dtype=np.float32))
|
| 402 |
+
|
| 403 |
+
# init SAM2 for this chunk
|
| 404 |
+
with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.float16):
|
| 405 |
+
inference_state = self.predictor.init_state_v2(frames=each_frames)
|
| 406 |
+
self.predictor.reset_state(inference_state)
|
| 407 |
+
ann_obj_id = 1
|
| 408 |
+
|
| 409 |
+
# seed with box prompts (preferred), else fall back to points
|
| 410 |
+
for ann_frame_idx, box_xyxy in zip(key_frame_index_list, key_frame_boxes):
|
| 411 |
+
used_box = False
|
| 412 |
+
try:
|
| 413 |
+
# If your predictor exposes a box API, this is ideal.
|
| 414 |
+
_ = self.predictor.add_new_box(
|
| 415 |
+
inference_state=inference_state,
|
| 416 |
+
frame_idx=ann_frame_idx,
|
| 417 |
+
obj_id=ann_obj_id,
|
| 418 |
+
box=box_xyxy[None, :] # shape (1, 4)
|
| 419 |
+
)
|
| 420 |
+
used_box = True
|
| 421 |
+
except Exception:
|
| 422 |
+
used_box = False
|
| 423 |
+
|
| 424 |
+
if not used_box:
|
| 425 |
+
# Fallback: sample a few positive points inside the box
|
| 426 |
+
x1, y1, x2, y2 = box_xyxy.astype(int)
|
| 427 |
+
cx, cy = (x1 + x2) // 2, (y1 + y2) // 2
|
| 428 |
+
pts = np.array([
|
| 429 |
+
[cx, cy],
|
| 430 |
+
[x1 + (x2 - x1) // 4, cy],
|
| 431 |
+
[x2 - (x2 - x1) // 4, cy],
|
| 432 |
+
[cx, y1 + (y2 - y1) // 4],
|
| 433 |
+
[cx, y2 - (y2 - y1) // 4],
|
| 434 |
+
], dtype=np.int32)
|
| 435 |
+
labels = np.ones(len(pts), dtype=np.int32) # 1 = positive
|
| 436 |
+
_ = self.predictor.add_new_points(
|
| 437 |
+
inference_state=inference_state,
|
| 438 |
+
frame_idx=ann_frame_idx,
|
| 439 |
+
obj_id=ann_obj_id,
|
| 440 |
+
points=pts,
|
| 441 |
+
labels=labels,
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
# propagate across the chunk
|
| 445 |
+
video_segments = {}
|
| 446 |
+
for out_frame_idx, out_obj_ids, out_mask_logits in self.predictor.propagate_in_video(inference_state):
|
| 447 |
+
video_segments[out_frame_idx] = {
|
| 448 |
+
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
| 449 |
+
for i, out_obj_id in enumerate(out_obj_ids)
|
| 450 |
+
}
|
| 451 |
+
|
| 452 |
+
# collect masks (single object id)
|
| 453 |
+
for out_frame_idx in range(len(video_segments)):
|
| 454 |
+
# (H, W) boolean/uint8
|
| 455 |
+
mask = next(iter(video_segments[out_frame_idx].values()))
|
| 456 |
+
mask = mask[0].astype(np.uint8)
|
| 457 |
+
all_mask.append(mask)
|
| 458 |
+
|
| 459 |
+
return all_mask
|
| 460 |
+
def get_mask_from_face_point(self, frames, th_step, kp2ds_all):
|
| 461 |
+
"""
|
| 462 |
+
Build masks using a single face *center point* per key frame,
|
| 463 |
+
then propagate with SAM2 across each chunk of frames.
|
| 464 |
+
"""
|
| 465 |
+
H, W = frames[0].shape[:2]
|
| 466 |
+
|
| 467 |
+
frame_num = len(frames)
|
| 468 |
+
num_step = 1 if frame_num < th_step else (frame_num + th_step) // th_step
|
| 469 |
+
|
| 470 |
+
all_mask = []
|
| 471 |
+
|
| 472 |
+
for step_idx in range(num_step):
|
| 473 |
+
each_frames = frames[step_idx * th_step:(step_idx + 1) * th_step]
|
| 474 |
+
kp2ds = kp2ds_all[step_idx * th_step:(step_idx + 1) * th_step]
|
| 475 |
+
if len(each_frames) == 0:
|
| 476 |
+
continue
|
| 477 |
+
|
| 478 |
+
# choose a few key frames to seed the object
|
| 479 |
+
key_frame_num = 1
|
| 480 |
+
key_frame_step = max(1, len(kp2ds) // key_frame_num)
|
| 481 |
+
key_frame_index_list = list(range(0, len(kp2ds), key_frame_step))[:key_frame_num]
|
| 482 |
+
|
| 483 |
+
# compute center point from face bbox for each selected key frame
|
| 484 |
+
center_pts = []
|
| 485 |
+
for kfi in key_frame_index_list:
|
| 486 |
+
meta = kp2ds[kfi]
|
| 487 |
+
# your helper returns (x1, x2, y1, y2)
|
| 488 |
+
x1, x2, y1, y2 = get_face_bboxes(
|
| 489 |
+
meta['keypoints_face'][:, :2],
|
| 490 |
+
scale=1.3,
|
| 491 |
+
image_shape=(H, W)
|
| 492 |
+
)
|
| 493 |
+
cx = (x1 + x2) // 2
|
| 494 |
+
cy = (y1 + y2) // 2
|
| 495 |
+
# clip just in case
|
| 496 |
+
cx = int(max(0, min(cx, W - 1)))
|
| 497 |
+
cy = int(max(0, min(cy, H - 1)))
|
| 498 |
+
center_pts.append(np.array([cx, cy], dtype=np.int32))
|
| 499 |
+
|
| 500 |
+
# init SAM2 for this chunk
|
| 501 |
+
inference_state = self.predictor.init_state_v2(frames=each_frames)
|
| 502 |
+
self.predictor.reset_state(inference_state)
|
| 503 |
+
ann_obj_id = 1
|
| 504 |
+
|
| 505 |
+
# seed each key frame with a single positive point at the face center
|
| 506 |
+
for ann_frame_idx, pt in zip(key_frame_index_list, center_pts):
|
| 507 |
+
pts = pt[None, :] # shape (1, 2)
|
| 508 |
+
labels = np.ones(1, dtype=np.int32) # 1 = positive
|
| 509 |
+
_ = self.predictor.add_new_points(
|
| 510 |
+
inference_state=inference_state,
|
| 511 |
+
frame_idx=ann_frame_idx,
|
| 512 |
+
obj_id=ann_obj_id,
|
| 513 |
+
points=pts,
|
| 514 |
+
labels=labels,
|
| 515 |
+
)
|
| 516 |
+
|
| 517 |
+
# propagate across the chunk
|
| 518 |
+
video_segments = {}
|
| 519 |
+
for out_frame_idx, out_obj_ids, out_mask_logits in self.predictor.propagate_in_video(inference_state):
|
| 520 |
+
video_segments[out_frame_idx] = {
|
| 521 |
+
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
| 522 |
+
for i, out_obj_id in enumerate(out_obj_ids)
|
| 523 |
+
}
|
| 524 |
+
|
| 525 |
+
# collect masks (single object id)
|
| 526 |
+
for out_frame_idx in range(len(video_segments)):
|
| 527 |
+
mask = next(iter(video_segments[out_frame_idx].values()))
|
| 528 |
+
mask = mask[0].astype(np.uint8)
|
| 529 |
+
all_mask.append(mask)
|
| 530 |
+
|
| 531 |
+
return all_mask
|
| 532 |
+
|
| 533 |
+
def get_face_bbox_masks(self, frames, kp2ds_all, scale=1.3, feather_px=0, keep_soft=False):
|
| 534 |
+
"""
|
| 535 |
+
Create a per-frame mask that's simply the face bounding box.
|
| 536 |
+
- scale: bbox scale factor used by get_face_bboxes
|
| 537 |
+
- feather_px: optional Gaussian blur in pixels to feather edges
|
| 538 |
+
- keep_soft: if True, keep float [0,1] soft mask (after blur); else binarize to {0,1}
|
| 539 |
+
"""
|
| 540 |
+
H, W = frames[0].shape[:2]
|
| 541 |
+
|
| 542 |
+
def _clip_box(x1, y1, x2, y2):
|
| 543 |
+
x1 = max(0, min(int(x1), W - 1))
|
| 544 |
+
x2 = max(0, min(int(x2), W - 1))
|
| 545 |
+
y1 = max(0, min(int(y1), H - 1))
|
| 546 |
+
y2 = max(0, min(int(y2), H - 1))
|
| 547 |
+
if x2 <= x1: x2 = min(W - 1, x1 + 1)
|
| 548 |
+
if y2 <= y1: y2 = min(H - 1, y1 + 1)
|
| 549 |
+
return x1, y1, x2, y2
|
| 550 |
+
|
| 551 |
+
masks = []
|
| 552 |
+
last_box = None
|
| 553 |
+
for meta in kp2ds_all:
|
| 554 |
+
# get_face_bboxes returns (x1, x2, y1, y2)
|
| 555 |
+
try:
|
| 556 |
+
x1, x2, y1, y2 = get_face_bboxes(
|
| 557 |
+
meta['keypoints_face'][:, :2],
|
| 558 |
+
scale=scale,
|
| 559 |
+
image_shape=(H, W)
|
| 560 |
+
)
|
| 561 |
+
x1, y1, x2, y2 = _clip_box(x1, y1, x2, y2)
|
| 562 |
+
last_box = (x1, y1, x2, y2)
|
| 563 |
+
except Exception:
|
| 564 |
+
# fallback: reuse last seen box to avoid holes
|
| 565 |
+
if last_box is None:
|
| 566 |
+
# no detection yet: push empty mask
|
| 567 |
+
masks.append(np.zeros((H, W), dtype=np.uint8))
|
| 568 |
+
continue
|
| 569 |
+
x1, y1, x2, y2 = last_box
|
| 570 |
+
|
| 571 |
+
m = np.zeros((H, W), dtype=np.float32)
|
| 572 |
+
m[y1:y2, x1:x2] = 1.0
|
| 573 |
+
|
| 574 |
+
if feather_px and feather_px > 0:
|
| 575 |
+
# kernel size must be odd and >= 3
|
| 576 |
+
k = max(3, int(feather_px) | 1)
|
| 577 |
+
m = cv2.GaussianBlur(m, (k, k), 0)
|
| 578 |
+
|
| 579 |
+
if keep_soft:
|
| 580 |
+
masks.append(m) # float [0,1]
|
| 581 |
+
else:
|
| 582 |
+
masks.append((m >= 0.5).astype(np.uint8)) # hard {0,1}
|
| 583 |
+
|
| 584 |
+
return masks
|
| 585 |
+
|