OmniAvatar / supertonic.py
alex
do faster CPU based tts
c20d00d
import json
import os
import time
from contextlib import contextmanager
from typing import Optional
from unicodedata import normalize
import numpy as np
import onnxruntime as ort
import soundfile as sf
from huggingface_hub import snapshot_download
class UnicodeProcessor:
def __init__(self, unicode_indexer_path: str):
with open(unicode_indexer_path, "r") as f:
self.indexer = json.load(f)
def _preprocess_text(self, text: str) -> str:
# TODO: add more preprocessing
text = normalize("NFKD", text)
return text
def _get_text_mask(self, text_ids_lengths: np.ndarray) -> np.ndarray:
text_mask = length_to_mask(text_ids_lengths)
return text_mask
def _text_to_unicode_values(self, text: str) -> np.ndarray:
unicode_values = np.array(
[ord(char) for char in text], dtype=np.uint16
) # 2 bytes
return unicode_values
def __call__(self, text_list: list[str]) -> tuple[np.ndarray, np.ndarray]:
text_list = [self._preprocess_text(t) for t in text_list]
text_ids_lengths = np.array([len(text) for text in text_list], dtype=np.int64)
text_ids = np.zeros((len(text_list), text_ids_lengths.max()), dtype=np.int64)
for i, text in enumerate(text_list):
unicode_vals = self._text_to_unicode_values(text)
text_ids[i, : len(unicode_vals)] = np.array(
[self.indexer[val] for val in unicode_vals], dtype=np.int64
)
text_mask = self._get_text_mask(text_ids_lengths)
return text_ids, text_mask
class Style:
def __init__(self, style_ttl_onnx: np.ndarray, style_dp_onnx: np.ndarray):
self.ttl = style_ttl_onnx
self.dp = style_dp_onnx
class TextToSpeech:
def __init__(
self,
cfgs: dict,
text_processor: UnicodeProcessor,
dp_ort: ort.InferenceSession,
text_enc_ort: ort.InferenceSession,
vector_est_ort: ort.InferenceSession,
vocoder_ort: ort.InferenceSession,
):
self.cfgs = cfgs
self.text_processor = text_processor
self.dp_ort = dp_ort
self.text_enc_ort = text_enc_ort
self.vector_est_ort = vector_est_ort
self.vocoder_ort = vocoder_ort
self.sample_rate = cfgs["ae"]["sample_rate"]
self.base_chunk_size = cfgs["ae"]["base_chunk_size"]
self.chunk_compress_factor = cfgs["ttl"]["chunk_compress_factor"]
self.ldim = cfgs["ttl"]["latent_dim"]
def sample_noisy_latent(
self, duration: np.ndarray
) -> tuple[np.ndarray, np.ndarray]:
bsz = len(duration)
wav_len_max = duration.max() * self.sample_rate
wav_lengths = (duration * self.sample_rate).astype(np.int64)
chunk_size = self.base_chunk_size * self.chunk_compress_factor
latent_len = ((wav_len_max + chunk_size - 1) / chunk_size).astype(np.int32)
latent_dim = self.ldim * self.chunk_compress_factor
noisy_latent = np.random.randn(bsz, latent_dim, latent_len).astype(np.float32)
latent_mask = get_latent_mask(
wav_lengths, self.base_chunk_size, self.chunk_compress_factor
)
noisy_latent = noisy_latent * latent_mask
return noisy_latent, latent_mask
def _infer(
self, text_list: list[str], style: Style, total_step: int, speed: float = 1.05
) -> tuple[np.ndarray, np.ndarray]:
assert (
len(text_list) == style.ttl.shape[0]
), "Number of texts must match number of style vectors"
bsz = len(text_list)
text_ids, text_mask = self.text_processor(text_list)
dur_onnx, *_ = self.dp_ort.run(
None, {"text_ids": text_ids, "style_dp": style.dp, "text_mask": text_mask}
)
dur_onnx = dur_onnx / speed
text_emb_onnx, *_ = self.text_enc_ort.run(
None,
{"text_ids": text_ids, "style_ttl": style.ttl, "text_mask": text_mask},
) # dur_onnx: [bsz]
xt, latent_mask = self.sample_noisy_latent(dur_onnx)
total_step_np = np.array([total_step] * bsz, dtype=np.float32)
for step in range(total_step):
current_step = np.array([step] * bsz, dtype=np.float32)
xt, *_ = self.vector_est_ort.run(
None,
{
"noisy_latent": xt,
"text_emb": text_emb_onnx,
"style_ttl": style.ttl,
"text_mask": text_mask,
"latent_mask": latent_mask,
"current_step": current_step,
"total_step": total_step_np,
},
)
wav, *_ = self.vocoder_ort.run(None, {"latent": xt})
return wav, dur_onnx
def __call__(
self,
text: str,
style: Style,
total_step: int,
speed: float = 1.05,
silence_duration: float = 0.3,
) -> tuple[np.ndarray, np.ndarray]:
assert (
style.ttl.shape[0] == 1
), "Single speaker text to speech only supports single style"
text_list = chunk_text(text)
wav_cat = None
dur_cat = None
for text in text_list:
wav, dur_onnx = self._infer([text], style, total_step, speed)
if wav_cat is None:
wav_cat = wav
dur_cat = dur_onnx
else:
silence = np.zeros(
(1, int(silence_duration * self.sample_rate)), dtype=np.float32
)
wav_cat = np.concatenate([wav_cat, silence, wav], axis=1)
dur_cat += dur_onnx + silence_duration
return wav_cat, dur_cat
def batch(
self, text_list: list[str], style: Style, total_step: int, speed: float = 1.05
) -> tuple[np.ndarray, np.ndarray]:
return self._infer(text_list, style, total_step, speed)
def length_to_mask(lengths: np.ndarray, max_len: Optional[int] = None) -> np.ndarray:
"""
Convert lengths to binary mask.
Args:
lengths: (B,)
max_len: int
Returns:
mask: (B, 1, max_len)
"""
max_len = max_len or lengths.max()
ids = np.arange(0, max_len)
mask = (ids < np.expand_dims(lengths, axis=1)).astype(np.float32)
return mask.reshape(-1, 1, max_len)
def get_latent_mask(
wav_lengths: np.ndarray, base_chunk_size: int, chunk_compress_factor: int
) -> np.ndarray:
latent_size = base_chunk_size * chunk_compress_factor
latent_lengths = (wav_lengths + latent_size - 1) // latent_size
latent_mask = length_to_mask(latent_lengths)
return latent_mask
def load_onnx(
onnx_path: str, opts: ort.SessionOptions, providers: list[str]
) -> ort.InferenceSession:
return ort.InferenceSession(onnx_path, sess_options=opts, providers=providers)
def load_onnx_all(
onnx_dir: str, opts: ort.SessionOptions, providers: list[str]
) -> tuple[
ort.InferenceSession,
ort.InferenceSession,
ort.InferenceSession,
ort.InferenceSession,
]:
dp_onnx_path = os.path.join(onnx_dir, "duration_predictor.onnx")
text_enc_onnx_path = os.path.join(onnx_dir, "text_encoder.onnx")
vector_est_onnx_path = os.path.join(onnx_dir, "vector_estimator.onnx")
vocoder_onnx_path = os.path.join(onnx_dir, "vocoder.onnx")
dp_ort = load_onnx(dp_onnx_path, opts, providers)
text_enc_ort = load_onnx(text_enc_onnx_path, opts, providers)
vector_est_ort = load_onnx(vector_est_onnx_path, opts, providers)
vocoder_ort = load_onnx(vocoder_onnx_path, opts, providers)
return dp_ort, text_enc_ort, vector_est_ort, vocoder_ort
def load_cfgs(onnx_dir: str) -> dict:
cfg_path = os.path.join(onnx_dir, "tts.json")
with open(cfg_path, "r") as f:
cfgs = json.load(f)
return cfgs
def load_text_processor(onnx_dir: str) -> UnicodeProcessor:
unicode_indexer_path = os.path.join(onnx_dir, "unicode_indexer.json")
text_processor = UnicodeProcessor(unicode_indexer_path)
return text_processor
def load_text_to_speech(onnx_dir: str, use_gpu: bool = False) -> TextToSpeech:
opts = ort.SessionOptions()
if use_gpu:
raise NotImplementedError("GPU mode is not fully tested")
else:
providers = ["CPUExecutionProvider"]
print("Using CPU for inference")
cfgs = load_cfgs(onnx_dir)
dp_ort, text_enc_ort, vector_est_ort, vocoder_ort = load_onnx_all(
onnx_dir, opts, providers
)
text_processor = load_text_processor(onnx_dir)
return TextToSpeech(
cfgs, text_processor, dp_ort, text_enc_ort, vector_est_ort, vocoder_ort
)
def load_voice_style(voice_style_paths: list[str], verbose: bool = False) -> Style:
bsz = len(voice_style_paths)
# Read first file to get dimensions
with open(voice_style_paths[0], "r") as f:
first_style = json.load(f)
ttl_dims = first_style["style_ttl"]["dims"]
dp_dims = first_style["style_dp"]["dims"]
# Pre-allocate arrays with full batch size
ttl_style = np.zeros([bsz, ttl_dims[1], ttl_dims[2]], dtype=np.float32)
dp_style = np.zeros([bsz, dp_dims[1], dp_dims[2]], dtype=np.float32)
# Fill in the data
for i, voice_style_path in enumerate(voice_style_paths):
with open(voice_style_path, "r") as f:
voice_style = json.load(f)
ttl_data = np.array(
voice_style["style_ttl"]["data"], dtype=np.float32
).flatten()
ttl_style[i] = ttl_data.reshape(ttl_dims[1], ttl_dims[2])
dp_data = np.array(voice_style["style_dp"]["data"], dtype=np.float32).flatten()
dp_style[i] = dp_data.reshape(dp_dims[1], dp_dims[2])
if verbose:
print(f"Loaded {bsz} voice styles")
return Style(ttl_style, dp_style)
@contextmanager
def timer(name: str):
start = time.time()
print(f"{name}...")
yield
print(f" -> {name} completed in {time.time() - start:.2f} sec")
def sanitize_filename(text: str, max_len: int) -> str:
"""Sanitize filename by replacing non-alphanumeric characters with underscores"""
import re
prefix = text[:max_len]
return re.sub(r"[^a-zA-Z0-9]", "_", prefix)
def chunk_text(text: str, max_len: int = 300) -> list[str]:
"""
Split text into chunks by paragraphs and sentences.
Args:
text: Input text to chunk
max_len: Maximum length of each chunk (default: 300)
Returns:
List of text chunks
"""
import re
# Split by paragraph (two or more newlines)
paragraphs = [p.strip() for p in re.split(r"\n\s*\n+", text.strip()) if p.strip()]
chunks = []
for paragraph in paragraphs:
paragraph = paragraph.strip()
if not paragraph:
continue
# Split by sentence boundaries (period, question mark, exclamation mark followed by space)
# But exclude common abbreviations like Mr., Mrs., Dr., etc. and single capital letters like F.
pattern = r"(?<!Mr\.)(?<!Mrs\.)(?<!Ms\.)(?<!Dr\.)(?<!Prof\.)(?<!Sr\.)(?<!Jr\.)(?<!Ph\.D\.)(?<!etc\.)(?<!e\.g\.)(?<!i\.e\.)(?<!vs\.)(?<!Inc\.)(?<!Ltd\.)(?<!Co\.)(?<!Corp\.)(?<!St\.)(?<!Ave\.)(?<!Blvd\.)(?<!\b[A-Z]\.)(?<=[.!?])\s+"
sentences = re.split(pattern, paragraph)
current_chunk = ""
for sentence in sentences:
if len(current_chunk) + len(sentence) + 1 <= max_len:
current_chunk += (" " if current_chunk else "") + sentence
else:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = sentence
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
model_dir = snapshot_download("Supertone/supertonic")
onnx_dir = f"{model_dir}/onnx"
text_to_speech = load_text_to_speech(onnx_dir, False)
def generate_speech(text_list, save_dir, voice_style="M1", total_step=5, speed=1.05, n_test=1, batch=None):
saved_files_list = []
voice_style_paths = [f"{model_dir}/voice_styles/{voice_style}.json"] * len(text_list)
assert len(voice_style_paths) == len(
text_list
), f"Number of voice styles ({len(voice_style_paths)}) must match number of texts ({len(text_list)})"
bsz = len(voice_style_paths)
style = load_voice_style(voice_style_paths, verbose=True)
for n in range(n_test):
print(f"\n[{n+1}/{n_test}] Starting synthesis...")
with timer("Generating speech from text"):
if batch:
wav, duration = text_to_speech.batch(text_list, style, total_step, speed)
else:
wav, duration = text_to_speech(text_list[0], style, total_step, speed)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
for b in range(bsz):
fname = f"{sanitize_filename(text_list[b], 20)}_{n+1}.wav"
w = wav[b, : int(text_to_speech.sample_rate * duration[b].item())] # [T_trim]
sf.write(os.path.join(save_dir, fname), w, text_to_speech.sample_rate)
saved_files_list.append(f"{save_dir}/{fname}")
# print(f"Saved: {save_dir}/{fname}")
print("\n=== Synthesis completed successfully! ===")
return saved_files_list