Spaces:
Runtime error
Runtime error
File size: 12,789 Bytes
efca0f4 0986800 efca0f4 0986800 efca0f4 0986800 efca0f4 96f87e4 efca0f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
import os
import re
from datetime import datetime
import asyncio
import threading
import gradio as gr
import torch
import pandas as pd
import soundfile as sf
import torchaudio
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
import torch.nn.functional as F
import uvicorn
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from src.transcription import SpeechEncoder
from src.sentiment import TextEncoder
from src.multimodal import MultimodalSentimentClassifier
# Configuration pour Hugging Face Spaces
HF_SPACE = os.getenv("HF_SPACE", "false").lower() == "true"
# Préchargement des modèles (partagés entre Gradio et API)
print("Chargement des modèles...")
# Modèle français plus léger
processor_ctc = Wav2Vec2Processor.from_pretrained(
"LeBenchmark/wav2vec2-FR-2K-small",
cache_dir="./models" if not HF_SPACE else None
)
model_ctc = Wav2Vec2ForCTC.from_pretrained(
"LeBenchmark/wav2vec2-FR-2K-small",
cache_dir="./models" if not HF_SPACE else None
)
speech_enc = SpeechEncoder()
text_enc = TextEncoder()
print("Modèles chargés avec succès!")
# ===== FONCTIONS PARTAGÉES =====
def transcribe_ctc(wav_path: str) -> str:
"""Transcription audio avec Wav2Vec2"""
try:
waveform, sr = torchaudio.load(wav_path)
if sr != 16000:
waveform = torchaudio.transforms.Resample(sr, 16000)(waveform)
if waveform.size(0) > 1:
waveform = waveform.mean(dim=0, keepdim=True)
inputs = processor_ctc(
waveform.squeeze().numpy(),
sampling_rate=16000,
return_tensors="pt",
padding=True
)
with torch.no_grad():
logits = model_ctc(**inputs).logits
pred_ids = torch.argmax(logits, dim=-1)
transcription = processor_ctc.batch_decode(pred_ids)[0].lower()
return transcription
except Exception as e:
raise Exception(f"Erreur transcription: {str(e)}")
def analyze_audio(audio_path):
"""Analyse audio pour Gradio"""
if audio_path is None:
return "Aucun audio fourni", "", pd.DataFrame(), {}
try:
# Lecture et prétraitement
data, sr = sf.read(audio_path)
arr = data.T if data.ndim > 1 else data
wav = torch.from_numpy(arr).unsqueeze(0).float()
if sr != 16000:
wav = torchaudio.transforms.Resample(sr, 16000)(wav)
sr = 16000
if wav.size(0) > 1:
wav = wav.mean(dim=0, keepdim=True)
# Transcription
inputs = processor_ctc(wav.squeeze().numpy(), sampling_rate=sr, return_tensors="pt")
with torch.no_grad():
logits = model_ctc(**inputs).logits
pred_ids = torch.argmax(logits, dim=-1)
transcription = processor_ctc.batch_decode(pred_ids)[0].lower()
# Sentiment principal
sent_dict = TextEncoder.analyze_sentiment(transcription)
label, conf = max(sent_dict.items(), key=lambda x: x[1])
emojis = {"positif": "😊", "neutre": "😐", "négatif": "☹️"}
emoji = emojis.get(label, "")
# Segmentation par phrase
segments = [s.strip() for s in re.split(r'[.?!]', transcription) if s.strip()]
seg_results = []
for seg in segments:
sd = TextEncoder.analyze_sentiment(seg)
l, c = max(sd.items(), key=lambda x: x[1])
seg_results.append({"Segment": seg, "Sentiment": l.capitalize(), "Confiance (%)": round(c*100,1)})
seg_df = pd.DataFrame(seg_results)
# Historique entry
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
history_entry = {
"Horodatage": timestamp,
"Transcription": transcription,
"Sentiment": label.capitalize(),
"Confiance (%)": round(conf*100,1)
}
# Rendu
summary_html = (
f"<div style='display:flex;align-items:center;'>"
f"<span style='font-size:3rem;margin-right:10px;'>{emoji}</span>"
f"<h2 style='color:#6a0dad;'>{label.upper()}</h2>"
f"</div>"
f"<p><strong>Confiance :</strong> {conf*100:.1f}%</p>"
)
return transcription, summary_html, seg_df, history_entry
except Exception as e:
error_msg = f"Erreur lors de l'analyse: {str(e)}"
return error_msg, "", pd.DataFrame(), {}
# ===== API FASTAPI =====
app = FastAPI(
title="API Multimodale de Transcription & Sentiment",
description="API pour l'analyse de sentiment audio en français",
version="1.0",
docs_url="/api/docs",
redoc_url="/api/redoc"
)
# Configuration CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/api/")
async def root():
"""Endpoint racine avec informations sur l'API"""
return {
"message": "API Multimodale de Transcription & Sentiment",
"version": "1.0",
"endpoints": {
"docs": "/api/docs",
"predict": "/api/predict",
"health": "/api/health"
},
"supported_formats": ["wav", "flac", "mp3"]
}
@app.get("/api/health")
async def health_check():
"""Vérification de l'état de l'API"""
return {
"status": "healthy",
"models_loaded": True,
"timestamp": "2024-01-01T00:00:00Z"
}
@app.post("/api/predict")
async def predict(file: UploadFile = File(...)):
"""Analyse de sentiment audio"""
# 1. Vérifier le type de fichier
if not file.filename or not file.filename.lower().endswith((".wav", ".flac", ".mp3")):
raise HTTPException(
status_code=400,
detail="Seuls les fichiers audio WAV/FLAC/MP3 sont acceptés."
)
# 2. Vérifier la taille du fichier (max 50MB)
content = await file.read()
if len(content) > 50 * 1024 * 1024: # 50MB
raise HTTPException(
status_code=400,
detail="Fichier trop volumineux. Taille maximale: 50MB"
)
# 3. Sauvegarder temporairement
import tempfile
suffix = os.path.splitext(file.filename)[1]
with tempfile.NamedTemporaryFile(suffix=suffix, delete=False) as tmp:
tmp.write(content)
tmp_path = tmp.name
try:
# 4. Transcription
transcription = transcribe_ctc(tmp_path)
if not transcription.strip():
return JSONResponse({
"transcription": "",
"sentiment": {"négatif": 0.33, "neutre": 0.34, "positif": 0.33},
"warning": "Aucune transcription détectée"
})
# 5. Features multimodales
try:
audio_feat = speech_enc.extract_features(tmp_path)
text_feat = text_enc.extract_features([transcription])
# 6. Classification
logits = model_mm.classifier(torch.cat([audio_feat, text_feat], dim=1))
probs = F.softmax(logits, dim=1).squeeze().tolist()
labels = ["négatif", "neutre", "positif"]
sentiment = {labels[i]: round(probs[i], 3) for i in range(len(labels))}
except Exception as e:
# Fallback vers analyse textuelle uniquement
print(f"Erreur multimodal, fallback textuel: {e}")
sent_dict = TextEncoder.analyze_sentiment(transcription)
sentiment = {k: round(v, 3) for k, v in sent_dict.items()}
return JSONResponse({
"transcription": transcription,
"sentiment": sentiment,
"filename": file.filename,
"file_size": len(content)
})
except Exception as e:
raise HTTPException(status_code=500, detail=f"Erreur lors de l'analyse: {str(e)}")
finally:
# Nettoyage fichier temporaire
try:
os.remove(tmp_path)
except:
pass
@app.post("/api/predict_text")
async def predict_text(text: str):
"""Analyse de sentiment textuel uniquement"""
try:
sent_dict = TextEncoder.analyze_sentiment(text)
sentiment = {k: round(v, 3) for k, v in sent_dict.items()}
return JSONResponse({
"text": text,
"sentiment": sentiment
})
except Exception as e:
raise HTTPException(status_code=500, detail=f"Erreur analyse textuelle: {str(e)}")
# ===== INTERFACE GRADIO =====
def export_history_csv(history):
if not history:
return None
df = pd.DataFrame(history)
path = "history.csv"
df.to_csv(path, index=False)
return path
# Interface Gradio
demo = gr.Blocks(
theme=gr.themes.Monochrome(primary_hue="purple"),
title="Analyse de Sentiment Audio - Hugging Face Space"
)
with demo:
gr.Markdown("""
# 🎤 Analyse de Sentiment Audio
Ce Space permet d'analyser le sentiment d'extraits audio en français en combinant :
- **Transcription audio** avec Wav2Vec2
- **Analyse de sentiment** avec BERT multilingue
- **API REST** pour intégration
""")
gr.HTML("""
<div style="display: flex; flex-direction: column; gap: 10px; margin-bottom: 20px;">
<div style="background-color: #f3e8ff; padding: 12px 20px; border-radius: 12px; border-left: 5px solid #8e44ad;">
<strong>Étape 1 :</strong> Enregistrez votre voix ou téléversez un fichier audio (format WAV recommandé).
</div>
<div style="background-color: #e0f7fa; padding: 12px 20px; border-radius: 12px; border-left: 5px solid #0097a7;">
<strong>Étape 2 :</strong> Cliquez sur le bouton <em><b>Analyser</b></em> pour lancer la transcription et l'analyse.
</div>
<div style="background-color: #fff3e0; padding: 12px 20px; border-radius: 12px; border-left: 5px solid #fb8c00;">
<strong>Étape 3 :</strong> Visualisez les résultats : transcription, sentiment, et analyse détaillée.
</div>
<div style="background-color: #e8f5e9; padding: 12px 20px; border-radius: 12px; border-left: 5px solid #43a047;">
<strong>Étape 4 :</strong> Exportez l'historique des analyses au format CSV si besoin.
</div>
</div>
""")
# Section API
with gr.Accordion("🔌 API REST", open=False):
gr.Markdown("""
### Endpoints disponibles :
- **`/api/predict`** - Analyse audio (POST)
- **`/api/predict_text`** - Analyse textuelle (POST)
- **`/api/health`** - Vérification état (GET)
- **`/api/docs`** - Documentation Swagger
### Exemple d'utilisation :
```bash
curl -X POST "https://huggingface.co/spaces/<username>/sentiment-audio-analyzer/api/predict" \
-F "file=@audio.wav"
```
""")
with gr.Row():
with gr.Column(scale=2):
audio_in = gr.Audio(
sources=["microphone", "upload"],
type="filepath",
label="Audio Input"
)
btn = gr.Button("🔍 Analyser", variant="primary")
export_btn = gr.Button("📊 Exporter CSV")
with gr.Column(scale=3):
chat = gr.Chatbot(label="Historique des échanges")
transcription_out = gr.Textbox(label="Transcription", interactive=False)
summary_out = gr.HTML(label="Sentiment")
seg_out = gr.Dataframe(label="Détail par segment")
hist_out = gr.Dataframe(label="Historique")
state_chat = gr.State([])
state_hist = gr.State([])
def chat_callback(audio_path, chat_history, hist_state):
transcription, summary, seg_df, hist_entry = analyze_audio(audio_path)
user_msg = "[Audio reçu]"
bot_msg = f"**Transcription :** {transcription}\n**Sentiment :** {summary}"
chat_history = chat_history + [(user_msg, bot_msg)]
if hist_entry:
hist_state = hist_state + [hist_entry]
return chat_history, transcription, summary, seg_df, hist_state
btn.click(
fn=chat_callback,
inputs=[audio_in, state_chat, state_hist],
outputs=[chat, transcription_out, summary_out, seg_out, state_hist]
)
export_btn.click(
fn=export_history_csv,
inputs=[state_hist],
outputs=[gr.File(label="Télécharger CSV")]
)
# ===== INTÉGRATION GRADIO + FASTAPI =====
# Monter l'API FastAPI dans Gradio
app = gr.mount_gradio_app(app, demo, path="/")
# Configuration pour Hugging Face Spaces
if __name__ == "__main__":
uvicorn.run(
app,
host="0.0.0.0" if HF_SPACE else "127.0.0.1",
port=7860,
log_level="info"
) |