import random import numpy as np import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import spaces # Available models MODEL_OPTIONS_TITLE = { "V6 Model": "alakxender/t5-divehi-title-generation-v6", "XS Model": "alakxender/t5-dhivehi-title-generation-xs" } # Cache for loaded models/tokenizers MODEL_CACHE = {} def get_model_and_tokenizer(model_dir): if model_dir not in MODEL_CACHE: print(f"Loading model: {model_dir}") tokenizer = AutoTokenizer.from_pretrained(model_dir) model = AutoModelForSeq2SeqLM.from_pretrained(model_dir) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Moving model to device: {device}") model.to(device) MODEL_CACHE[model_dir] = (tokenizer, model) return MODEL_CACHE[model_dir] prefix = "2title: " max_input_length = 512 max_target_length = 32 @spaces.GPU() def generate_title(content, seed, use_sampling, model_choice): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) model_dir = MODEL_OPTIONS_TITLE[model_choice] tokenizer, model = get_model_and_tokenizer(model_dir) input_text = prefix + content.strip() inputs = tokenizer( input_text, max_length=max_input_length, truncation=True, return_tensors="pt" ) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") inputs = {k: v.to(device) for k, v in inputs.items()} gen_kwargs = { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "max_length": max_target_length, "no_repeat_ngram_size": 2, } if use_sampling: gen_kwargs.update({ "do_sample": True, "temperature": 1.0, "top_p": 0.95, "num_return_sequences": 1, }) else: gen_kwargs.update({ "num_beams": 4, "do_sample": False, "early_stopping": True, }) with torch.no_grad(): outputs = model.generate(**gen_kwargs) title = tokenizer.decode(outputs[0], skip_special_tokens=True) return title