Spaces:
Running
on
Zero
Running
on
Zero
import random | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import spaces | |
# Available models | |
MODEL_OPTIONS_TITLE = { | |
"V6 Model": "alakxender/t5-divehi-title-generation-v6", | |
"XS Model": "alakxender/t5-dhivehi-title-generation-xs" | |
} | |
# Cache for loaded models/tokenizers | |
MODEL_CACHE = {} | |
def get_model_and_tokenizer(model_dir): | |
if model_dir not in MODEL_CACHE: | |
print(f"Loading model: {model_dir}") | |
tokenizer = AutoTokenizer.from_pretrained(model_dir) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_dir) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"Moving model to device: {device}") | |
model.to(device) | |
MODEL_CACHE[model_dir] = (tokenizer, model) | |
return MODEL_CACHE[model_dir] | |
prefix = "2title: " | |
max_input_length = 512 | |
max_target_length = 32 | |
def generate_title(content, seed, use_sampling, model_choice): | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
if torch.cuda.is_available(): | |
torch.cuda.manual_seed_all(seed) | |
model_dir = MODEL_OPTIONS_TITLE[model_choice] | |
tokenizer, model = get_model_and_tokenizer(model_dir) | |
input_text = prefix + content.strip() | |
inputs = tokenizer( | |
input_text, | |
max_length=max_input_length, | |
truncation=True, | |
return_tensors="pt" | |
) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
gen_kwargs = { | |
"input_ids": inputs["input_ids"], | |
"attention_mask": inputs["attention_mask"], | |
"max_length": max_target_length, | |
"no_repeat_ngram_size": 2, | |
} | |
if use_sampling: | |
gen_kwargs.update({ | |
"do_sample": True, | |
"temperature": 1.0, | |
"top_p": 0.95, | |
"num_return_sequences": 1, | |
}) | |
else: | |
gen_kwargs.update({ | |
"num_beams": 4, | |
"do_sample": False, | |
"early_stopping": True, | |
}) | |
with torch.no_grad(): | |
outputs = model.generate(**gen_kwargs) | |
title = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return title |