Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,386 Bytes
0def9f2 82b0ab8 0def9f2 82b0ab8 0def9f2 82b0ab8 0def9f2 82b0ab8 0def9f2 82b0ab8 0def9f2 125e370 0def9f2 82b0ab8 0def9f2 82b0ab8 0def9f2 82b0ab8 0def9f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
#!/usr/bin/env python
# Gradio app for Dhivehi typo correction
import difflib
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
import gradio as gr
import spaces
# Available models
MODEL_OPTIONS_TYPO = {
"A3 Model": "alakxender/t5-dhivehi-typo-corrector-asr",
"XS Model": "alakxender/dhivehi-quick-spell-check-t5"
}
# Function to load model and tokenizer
def load_model(model_choice):
print("Loading model and tokenizer...")
try:
selected_model = MODEL_OPTIONS_TYPO[model_choice]
tokenizer = AutoTokenizer.from_pretrained(selected_model)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForSeq2SeqLM.from_pretrained(selected_model)
# Move model to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
print(f"Model loaded successfully on {device}")
return model, tokenizer, device
except Exception as e:
print(f"Error loading model: {e}")
return None, None, None
# Function to correct typos (reverted to single output)
def correct_typo(text, model, tokenizer, device):
if not text.strip():
#return "Please enter some text."
raise gr.Error("Please enter some text💥!", duration=5)
if len(text.strip()) > 1024:
#return "Shorter the better."
raise gr.Error("Shorter the better💥!", duration=5)
try:
# Prepare input with prefix
input_text = "fix: " + text
# Tokenize input
inputs = tokenizer(input_text, return_tensors="pt", max_length=128, truncation=True)
inputs = inputs.to(device)
# Generate output
with torch.no_grad():
outputs = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs.get("attention_mask", None),
max_length=128,
num_beams=4,
early_stopping=True
)
# Decode the output
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return corrected_text
except Exception as e:
return f"Error: {str(e)}"
# Initialize model and tokenizer
model, tokenizer, device = load_model("A3 Model")
if model is None:
print("Failed to load model. Please check your model and tokenizer paths.")
# Function to highlight differences between original and corrected text
def highlight_differences(original, corrected):
d = difflib.Differ()
orig_words = original.split()
corr_words = corrected.split()
diff = list(d.compare(orig_words, corr_words))
html_parts = []
i = 0
while i < len(diff):
if diff[i].startswith(' '): # Unchanged
html_parts.append(f'<span>{diff[i][2:]}</span>')
elif diff[i].startswith('- '): # Removed
if i + 1 < len(diff) and diff[i + 1].startswith('+ '):
# Changed word - show correction
old_word = diff[i][2:]
new_word = diff[i + 1][2:]
html_parts.append(f'<span style="background-color: #fff3cd">{old_word}</span>→<span style="background-color: #d4edda">{new_word}</span>')
i += 1
else:
# Removed word
html_parts.append(f'<span style="background-color: #f8d7da">{diff[i][2:]}</span>')
elif diff[i].startswith('+ '): # Added
html_parts.append(f'<span style="background-color: #d4edda">{diff[i][2:]}</span>')
i += 1
return f'<div class="dhivehi-diff">{" ".join(html_parts)}</div>'
# Function to process the input for Gradio
@spaces.GPU()
def process_input(text,model_choice):
if model is None:
load_model(model_choice)
corrected = correct_typo(text, model, tokenizer, device)
highlighted = highlight_differences(text, corrected)
return corrected, highlighted
# Define CSS for Dhivehi font styling
css = """
.textbox1 textarea {
font-size: 18px !important;
font-family: 'MV_Faseyha', 'Faruma', 'A_Faruma' !important;
line-height: 1.8 !important;
direction: rtl !important;
}
.dhivehi-text {
font-size: 18px !important;
font-family: 'MV_Faseyha', 'Faruma', 'A_Faruma' !important;
line-height: 1.8 !important;
direction: rtl !important;
text-align: right !important;
padding: 10px !important;
background: transparent !important; /* Make background transparent */
border-radius: 4px !important;
color: #ffffff !important; /* White text for dark background */
}
/* Style for the highlighted differences */
.dhivehi-diff {
font-size: 18px !important;
font-family: 'MV_Faseyha', 'Faruma', 'A_Faruma' !important;
line-height: 1.8 !important;
direction: rtl !important;
text-align: right !important;
padding: 15px !important;
background: transparent !important; /* Make background transparent */
border: 1px solid rgba(255, 255, 255, 0.1) !important; /* Subtle border */
border-radius: 4px !important;
margin-top: 10px !important;
color: #ffffff !important; /* White text for dark background */
}
/* Ensure the highlighted spans have good contrast */
.dhivehi-diff span {
padding: 2px 5px !important;
border-radius: 3px !important;
margin: 0 2px !important;
}
/* Original text (yellow background) */
.dhivehi-diff span[style*="background-color: #fff3cd"] {
background-color: rgba(255, 243, 205, 0.2) !important;
color: #ffd700 !important; /* Golden yellow for visibility */
border: 1px solid rgba(255, 243, 205, 0.3) !important;
}
/* Corrected text (green background) */
.dhivehi-diff span[style*="background-color: #d4edda"] {
background-color: rgba(212, 237, 218, 0.2) !important;
color: #98ff98 !important; /* Light green for visibility */
border: 1px solid rgba(212, 237, 218, 0.3) !important;
}
/* Removed text (red background) */
.dhivehi-diff span[style*="background-color: #f8d7da"] {
background-color: rgba(248, 215, 218, 0.2) !important;
color: #ff6b6b !important; /* Light red for visibility */
border: 1px solid rgba(248, 215, 218, 0.3) !important;
}
/* Arrow color */
.dhivehi-diff span:contains('→') {
color: #ffffff !important;
}
""" |