Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
228e8c1
0
Parent(s):
init
Browse files- .gitattributes +36 -0
- .gitignore +2 -0
- README.md +13 -0
- app.py +423 -0
- detector.py +141 -0
- example.pdf +3 -0
- hw_1_sl.png +0 -0
- hw_2_sl.jpg +0 -0
- hw_3_sl.png +0 -0
- hw_4_sl.png +0 -0
- ml.png +0 -0
- requirements.txt +3 -0
- type_1_sl.png +0 -0
- type_2_sl.png +0 -0
.gitattributes
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.pdf filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__
|
| 2 |
+
output
|
README.md
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Dhivehi Ocr
|
| 3 |
+
emoji: 📝
|
| 4 |
+
colorFrom: gray
|
| 5 |
+
colorTo: yellow
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 5.25.2
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
short_description: Thaana text-to-image, ocr
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,423 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import os
|
| 4 |
+
import sys
|
| 5 |
+
import subprocess
|
| 6 |
+
from PIL import Image, ImageDraw
|
| 7 |
+
from detector import TextDetector
|
| 8 |
+
import tempfile
|
| 9 |
+
import shutil
|
| 10 |
+
import json
|
| 11 |
+
from datetime import datetime
|
| 12 |
+
|
| 13 |
+
# List of available models with their IDs and prompts
|
| 14 |
+
MODELS = {
|
| 15 |
+
"Medium-14k, Single Line": { # /lab/mx01/md/sl-14/ft/
|
| 16 |
+
"id": "alakxender/paligemma2-qlora-dhivehi-ocr-224-sl-14k",
|
| 17 |
+
"prompt": "What text is written in this image?"
|
| 18 |
+
},
|
| 19 |
+
"Medium-16k, Single Line": { # /lab/mx01/md/sl-16/ft/
|
| 20 |
+
"id": "alakxender/paligemma2-qlora-dhivehi-ocr-224-sl-md-16k",
|
| 21 |
+
"prompt": "What text is written in this image?"
|
| 22 |
+
},
|
| 23 |
+
"Small, Single Line": { # /lab/mx01/sm/sl/ft/
|
| 24 |
+
"id": "alakxender/paligemma2-qlora-vrd-dhivehi-ocr-224-sm",
|
| 25 |
+
"prompt": "What text is written in this image?"
|
| 26 |
+
}
|
| 27 |
+
}
|
| 28 |
+
""" "Full Text": { # /lab/mx01/pr/sl/ft/
|
| 29 |
+
"id": "alakxender/paligemma2-qlora-dhivehi-ocr-224-mx01",
|
| 30 |
+
"prompt": "What text is written in this image?",
|
| 31 |
+
} ,
|
| 32 |
+
Full Text": { # /lab/mx01/pr/sl/ft/
|
| 33 |
+
"id": "alakxender/paligemma2-qlora-dhivehi-ocr-448-mx01",
|
| 34 |
+
"prompt": "OCR",
|
| 35 |
+
}
|
| 36 |
+
,
|
| 37 |
+
Final": { # /lab/mx01/pr/sl/ft-final/
|
| 38 |
+
"id": "alakxender/paligemma2-dhivehi-ocr-448-mx01-final",
|
| 39 |
+
"prompt": "OCR", # smaller the better: 3k vrd, 3k printed, 3k handwritten, 1k single line
|
| 40 |
+
}"""
|
| 41 |
+
# Global model state
|
| 42 |
+
model = None
|
| 43 |
+
processor = None
|
| 44 |
+
current_model_name = None
|
| 45 |
+
detector = TextDetector()
|
| 46 |
+
|
| 47 |
+
def load_model(model_name):
|
| 48 |
+
"""Load the model and processor"""
|
| 49 |
+
global model, processor, current_model_name
|
| 50 |
+
|
| 51 |
+
model_id = MODELS[model_name]['id']
|
| 52 |
+
|
| 53 |
+
# Load the PEFT configuration to get the base model path
|
| 54 |
+
peft_config = PeftConfig.from_pretrained(model_id)
|
| 55 |
+
|
| 56 |
+
# Load the base model
|
| 57 |
+
base_model = PaliGemmaForConditionalGeneration.from_pretrained(
|
| 58 |
+
peft_config.base_model_name_or_path,
|
| 59 |
+
device_map="auto",
|
| 60 |
+
torch_dtype=torch.bfloat16
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# Load the adapter on top of the base model
|
| 64 |
+
model = PeftModel.from_pretrained(base_model, model_id)
|
| 65 |
+
processor = AutoProcessor.from_pretrained(peft_config.base_model_name_or_path)
|
| 66 |
+
current_model_name = model_name
|
| 67 |
+
|
| 68 |
+
def process_single_line(image, model_name):
|
| 69 |
+
"""Process a single line of text"""
|
| 70 |
+
prompt = MODELS[model_name]["prompt"]
|
| 71 |
+
# Add image token to prompt
|
| 72 |
+
prompt = f"<image>{prompt}"
|
| 73 |
+
model_inputs = processor(text=prompt, images=image, return_tensors="pt").to(torch.bfloat16).to("cuda")
|
| 74 |
+
|
| 75 |
+
outputs = model.generate(
|
| 76 |
+
**model_inputs,
|
| 77 |
+
max_new_tokens=500,
|
| 78 |
+
do_sample=False
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 82 |
+
# Remove the prompt and any leading/trailing whitespace
|
| 83 |
+
cleaned_text = generated_text.replace(prompt, "").strip()
|
| 84 |
+
# Remove any remaining question marks or other artifacts
|
| 85 |
+
cleaned_text = cleaned_text.lstrip("?").strip()
|
| 86 |
+
# Remove the prompt text if it somehow appears in the output
|
| 87 |
+
cleaned_text = cleaned_text.replace("What text is written in this image?", "").strip()
|
| 88 |
+
return cleaned_text
|
| 89 |
+
|
| 90 |
+
def draw_bboxes(image, text_lines):
|
| 91 |
+
"""Draw bounding boxes on the image"""
|
| 92 |
+
draw = ImageDraw.Draw(image)
|
| 93 |
+
for line in text_lines:
|
| 94 |
+
# Draw polygon - flatten nested coordinates
|
| 95 |
+
polygon = line['polygon']
|
| 96 |
+
flat_polygon = [coord for point in polygon for coord in point]
|
| 97 |
+
draw.polygon(flat_polygon, outline="red", width=2)
|
| 98 |
+
|
| 99 |
+
# Draw bbox
|
| 100 |
+
x1, y1, x2, y2 = line['bbox']
|
| 101 |
+
draw.rectangle([x1, y1, x2, y2], outline="blue", width=1)
|
| 102 |
+
|
| 103 |
+
# Draw confidence score
|
| 104 |
+
draw.text((x1, y1 - 10), f"{line['confidence']:.2f}", fill="red")
|
| 105 |
+
return image
|
| 106 |
+
|
| 107 |
+
def process_multi_line(image, model_name, progress=gr.Progress()):
|
| 108 |
+
"""Process a multi-line image by detecting text regions and OCRing each region"""
|
| 109 |
+
# Create temporary directory
|
| 110 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
| 111 |
+
# Save input image
|
| 112 |
+
input_path = os.path.join(temp_dir, "input.png")
|
| 113 |
+
image.save(input_path)
|
| 114 |
+
|
| 115 |
+
# Initialize detector with temp directory
|
| 116 |
+
detector = TextDetector(output_dir=temp_dir)
|
| 117 |
+
|
| 118 |
+
# Run text detection
|
| 119 |
+
progress(0.1, desc="Detecting text regions...")
|
| 120 |
+
results = detector.process_input(input_path, save_images=True)
|
| 121 |
+
|
| 122 |
+
# Get text regions for the image
|
| 123 |
+
regions = detector.get_text_regions(results, "input")
|
| 124 |
+
if not regions:
|
| 125 |
+
return "No text regions detected", []
|
| 126 |
+
|
| 127 |
+
# Process each text region
|
| 128 |
+
page_regions = regions[0] # First page
|
| 129 |
+
text_lines = page_regions.get('bboxes', [])
|
| 130 |
+
|
| 131 |
+
if not text_lines:
|
| 132 |
+
return "No text lines detected", []
|
| 133 |
+
|
| 134 |
+
# Sort text lines by y-coordinate (top to bottom)
|
| 135 |
+
text_lines.sort(key=lambda x: x['bbox'][1])
|
| 136 |
+
|
| 137 |
+
# Draw bounding boxes on the image
|
| 138 |
+
bbox_image = image.copy()
|
| 139 |
+
bbox_image = draw_bboxes(bbox_image, text_lines)
|
| 140 |
+
|
| 141 |
+
# Process each text line
|
| 142 |
+
all_text = []
|
| 143 |
+
total_lines = len(text_lines)
|
| 144 |
+
|
| 145 |
+
for i, line in enumerate(text_lines):
|
| 146 |
+
progress(0.2 + (i/total_lines)*0.8, desc=f"Processing line {i+1}/{total_lines}...")
|
| 147 |
+
|
| 148 |
+
# Extract text region using bbox
|
| 149 |
+
x1, y1, x2, y2 = line['bbox']
|
| 150 |
+
line_image = image.crop((x1, y1, x2, y2))
|
| 151 |
+
|
| 152 |
+
# Process the line
|
| 153 |
+
line_text = process_single_line(line_image, model_name)
|
| 154 |
+
all_text.append(line_text)
|
| 155 |
+
|
| 156 |
+
progress(1.0, desc="Done!")
|
| 157 |
+
return "\n".join(all_text), [bbox_image] # Return as list for gallery
|
| 158 |
+
|
| 159 |
+
def process_pdf(pdf_path, model_name, progress=gr.Progress()):
|
| 160 |
+
"""Process a PDF file"""
|
| 161 |
+
# Create temporary directory
|
| 162 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
| 163 |
+
# Initialize detector with temp directory
|
| 164 |
+
detector = TextDetector(output_dir=temp_dir)
|
| 165 |
+
|
| 166 |
+
# Run text detection on PDF (process first 2 pages)
|
| 167 |
+
progress(0.1, desc="Detecting text regions in PDF...")
|
| 168 |
+
results = detector.process_input(pdf_path, save_images=True, page_range="0,1")
|
| 169 |
+
|
| 170 |
+
# Get text regions for the PDF
|
| 171 |
+
regions = detector.get_text_regions(results, os.path.splitext(os.path.basename(pdf_path))[0])
|
| 172 |
+
if not regions:
|
| 173 |
+
return "No text regions detected", []
|
| 174 |
+
|
| 175 |
+
# Process each page
|
| 176 |
+
all_text = []
|
| 177 |
+
bbox_images = []
|
| 178 |
+
|
| 179 |
+
# Get the base name of the PDF without extension
|
| 180 |
+
pdf_name = os.path.splitext(os.path.basename(pdf_path))[0]
|
| 181 |
+
|
| 182 |
+
for page_num, page_regions in enumerate(regions):
|
| 183 |
+
progress(0.2 + (page_num/2)*0.3, desc=f"Processing page {page_num+1}...")
|
| 184 |
+
|
| 185 |
+
# Try different possible paths for the page image
|
| 186 |
+
possible_paths = [
|
| 187 |
+
os.path.join(temp_dir, pdf_name, f"{pdf_name}_{page_num}_bbox.png"), # Detector's actual path
|
| 188 |
+
os.path.join(temp_dir, pdf_name, f"page_{page_num}.png"), # Original path
|
| 189 |
+
os.path.join(temp_dir, f"page_{page_num}.png"), # Direct in output dir
|
| 190 |
+
os.path.join(temp_dir, f"{pdf_name}_page_{page_num}.png") # Alternative naming
|
| 191 |
+
]
|
| 192 |
+
|
| 193 |
+
page_image = None
|
| 194 |
+
for page_image_path in possible_paths:
|
| 195 |
+
if os.path.exists(page_image_path):
|
| 196 |
+
page_image = Image.open(page_image_path)
|
| 197 |
+
break
|
| 198 |
+
|
| 199 |
+
if page_image is None:
|
| 200 |
+
all_text.append(f"\nPage {page_num+1}: Page image not found. Tried paths:\n" +
|
| 201 |
+
"\n".join(f"- {path}" for path in possible_paths))
|
| 202 |
+
continue
|
| 203 |
+
|
| 204 |
+
text_lines = page_regions.get('bboxes', [])
|
| 205 |
+
if not text_lines:
|
| 206 |
+
all_text.append(f"\nPage {page_num+1}: No text lines detected")
|
| 207 |
+
continue
|
| 208 |
+
|
| 209 |
+
# Sort text lines by y-coordinate (top to bottom)
|
| 210 |
+
text_lines.sort(key=lambda x: x['bbox'][1])
|
| 211 |
+
|
| 212 |
+
# Draw bounding boxes on the image
|
| 213 |
+
bbox_image = page_image.copy()
|
| 214 |
+
bbox_image = draw_bboxes(bbox_image, text_lines)
|
| 215 |
+
bbox_images.append(bbox_image)
|
| 216 |
+
|
| 217 |
+
# Process each text line
|
| 218 |
+
page_text = []
|
| 219 |
+
total_lines = len(text_lines)
|
| 220 |
+
|
| 221 |
+
for i, line in enumerate(text_lines):
|
| 222 |
+
progress(0.5 + (page_num/2)*0.2 + (i/total_lines)*0.3,
|
| 223 |
+
desc=f"Processing line {i+1}/{total_lines} on page {page_num+1}...")
|
| 224 |
+
|
| 225 |
+
# Extract text region using bbox
|
| 226 |
+
x1, y1, x2, y2 = line['bbox']
|
| 227 |
+
line_image = page_image.crop((x1, y1, x2, y2))
|
| 228 |
+
|
| 229 |
+
# Process the line
|
| 230 |
+
line_text = process_single_line(line_image, model_name)
|
| 231 |
+
page_text.append(line_text)
|
| 232 |
+
|
| 233 |
+
# Add page text without page number
|
| 234 |
+
all_text.extend(page_text)
|
| 235 |
+
|
| 236 |
+
progress(1.0, desc="Done!")
|
| 237 |
+
return "\n".join(all_text), bbox_images # Return list of bbox images
|
| 238 |
+
|
| 239 |
+
@spaces.GPU
|
| 240 |
+
def process_image(model_name, image, progress=gr.Progress()):
|
| 241 |
+
"""Process a single image"""
|
| 242 |
+
if image is None:
|
| 243 |
+
return "", None
|
| 244 |
+
|
| 245 |
+
# Load model if different model selected
|
| 246 |
+
if model_name != current_model_name:
|
| 247 |
+
progress(0, desc="Loading model...")
|
| 248 |
+
load_model(model_name)
|
| 249 |
+
|
| 250 |
+
return process_multi_line(image, model_name, progress)
|
| 251 |
+
|
| 252 |
+
# Example images with descriptions
|
| 253 |
+
examples = [
|
| 254 |
+
["type_1_sl.png", "Typed Dhivehi text sample 1"],
|
| 255 |
+
["type_2_sl.png", "Typed Dhivehi text sample 2"],
|
| 256 |
+
["hw_1_sl.png", "Handwritten Dhivehi text sample 1"], # exp this
|
| 257 |
+
["hw_2_sl.jpg", "Handwritten Dhivehi text sample 2"], # exp val3
|
| 258 |
+
["hw_3_sl.png", "Handwritten Dhivehi text sample 3"], # exp val2
|
| 259 |
+
["hw_4_sl.png", "Handwritten Dhivehi text sample 4"], # exp val1
|
| 260 |
+
["ml.png", "Multi-line Dhivehi text sample"]
|
| 261 |
+
]
|
| 262 |
+
|
| 263 |
+
css = """
|
| 264 |
+
.textbox1 textarea {
|
| 265 |
+
font-size: 18px !important;
|
| 266 |
+
font-family: 'MV_Faseyha', 'Faruma', 'A_Faruma' !important;
|
| 267 |
+
line-height: 1.8 !important;
|
| 268 |
+
}
|
| 269 |
+
.textbox2 textarea {
|
| 270 |
+
display: none;
|
| 271 |
+
}
|
| 272 |
+
"""
|
| 273 |
+
|
| 274 |
+
with gr.Blocks(title="Dhivehi OCR",css=css) as demo:
|
| 275 |
+
gr.Markdown("# Dhivehi OCR")
|
| 276 |
+
gr.Markdown("Thaana OCR experimental finetunes")
|
| 277 |
+
|
| 278 |
+
with gr.Row():
|
| 279 |
+
model_dropdown = gr.Dropdown(
|
| 280 |
+
choices=list(MODELS.keys()),
|
| 281 |
+
value=list(MODELS.keys())[0], # Default to first model
|
| 282 |
+
label="Select Model"
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
with gr.Tabs():
|
| 286 |
+
with gr.Tab("Image Input"):
|
| 287 |
+
with gr.Row():
|
| 288 |
+
with gr.Column(scale=2):
|
| 289 |
+
image_input = gr.Image(type="pil", label="Input Image")
|
| 290 |
+
image_submit_btn = gr.Button("Extract Text")
|
| 291 |
+
|
| 292 |
+
# Image examples
|
| 293 |
+
gr.Examples(
|
| 294 |
+
examples=[[img] for img, _ in examples],
|
| 295 |
+
inputs=[image_input],
|
| 296 |
+
label="Example Images",
|
| 297 |
+
examples_per_page=8
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
with gr.Column(scale=3):
|
| 301 |
+
with gr.Tabs():
|
| 302 |
+
with gr.Tab("Extracted Text"):
|
| 303 |
+
image_text_output = gr.Textbox(
|
| 304 |
+
lines=5,
|
| 305 |
+
label="Extracted Text",
|
| 306 |
+
show_copy_button=True,
|
| 307 |
+
rtl=True,
|
| 308 |
+
elem_classes="textbox1"
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
with gr.Tab("Detected Text Regions"):
|
| 312 |
+
image_bbox_output = gr.Gallery(
|
| 313 |
+
label="Detected Text Regions",
|
| 314 |
+
show_label=True,
|
| 315 |
+
columns=2
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
with gr.Tab("PDF Input"):
|
| 319 |
+
with gr.Row():
|
| 320 |
+
with gr.Column(scale=2):
|
| 321 |
+
pdf_input = gr.File(
|
| 322 |
+
label="Input PDF",
|
| 323 |
+
file_types=[".pdf"]
|
| 324 |
+
)
|
| 325 |
+
pdf_submit_btn = gr.Button("Extract Text")
|
| 326 |
+
|
| 327 |
+
# PDF examples
|
| 328 |
+
gr.Examples(
|
| 329 |
+
examples=[
|
| 330 |
+
["example.pdf", "Example 1"],
|
| 331 |
+
], # Add PDF examples here if needed
|
| 332 |
+
inputs=[pdf_input],
|
| 333 |
+
label="Example PDFs",
|
| 334 |
+
examples_per_page=8
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
with gr.Column(scale=3):
|
| 338 |
+
with gr.Tabs():
|
| 339 |
+
with gr.Tab("Extracted Text"):
|
| 340 |
+
pdf_text_output = gr.Textbox(
|
| 341 |
+
lines=5,
|
| 342 |
+
label="Extracted Text",
|
| 343 |
+
show_copy_button=True,
|
| 344 |
+
rtl=True,
|
| 345 |
+
elem_classes="textbox1"
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
with gr.Tab("Detected Text Regions"):
|
| 349 |
+
pdf_bbox_output = gr.Gallery(
|
| 350 |
+
label="Detected Text Regions",
|
| 351 |
+
show_label=True,
|
| 352 |
+
columns=2
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
# Process image when button is clicked
|
| 356 |
+
image_submit_btn.click(
|
| 357 |
+
fn=process_image,
|
| 358 |
+
inputs=[model_dropdown, image_input],
|
| 359 |
+
outputs=[image_text_output, image_bbox_output]
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
# Process PDF when button is clicked
|
| 363 |
+
pdf_submit_btn.click(
|
| 364 |
+
fn=process_pdf,
|
| 365 |
+
inputs=[pdf_input, model_dropdown],
|
| 366 |
+
outputs=[pdf_text_output, pdf_bbox_output]
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
# Add experimental note at the bottom
|
| 370 |
+
gr.Markdown("""
|
| 371 |
+
---
|
| 372 |
+
**Note:** This is an experimental proof of concept (POC) for Dhivehi OCR.
|
| 373 |
+
""")
|
| 374 |
+
|
| 375 |
+
# Function to install requirements
|
| 376 |
+
def install_requirements():
|
| 377 |
+
requirements_path = 'requirements.txt'
|
| 378 |
+
|
| 379 |
+
# Check if requirements.txt exists
|
| 380 |
+
if not os.path.exists(requirements_path):
|
| 381 |
+
print("Error: requirements.txt not found")
|
| 382 |
+
return False
|
| 383 |
+
|
| 384 |
+
try:
|
| 385 |
+
print("Installing requirements...")
|
| 386 |
+
# Using --no-cache-dir to avoid memory issues
|
| 387 |
+
subprocess.check_call([
|
| 388 |
+
sys.executable,
|
| 389 |
+
"-m",
|
| 390 |
+
"pip",
|
| 391 |
+
"install",
|
| 392 |
+
"-r",
|
| 393 |
+
requirements_path,
|
| 394 |
+
"--no-cache-dir"
|
| 395 |
+
])
|
| 396 |
+
print("Successfully installed all requirements")
|
| 397 |
+
return True
|
| 398 |
+
except subprocess.CalledProcessError as e:
|
| 399 |
+
print(f"Error installing requirements: {e}")
|
| 400 |
+
return False
|
| 401 |
+
except Exception as e:
|
| 402 |
+
print(f"Unexpected error: {e}")
|
| 403 |
+
return False
|
| 404 |
+
|
| 405 |
+
# Launch the app
|
| 406 |
+
if __name__ == "__main__":
|
| 407 |
+
# First install requirements
|
| 408 |
+
success = install_requirements()
|
| 409 |
+
if success:
|
| 410 |
+
print("All requirements installed successfully")
|
| 411 |
+
|
| 412 |
+
from transformers.image_utils import load_image
|
| 413 |
+
import torch
|
| 414 |
+
from transformers import PaliGemmaForConditionalGeneration, AutoProcessor
|
| 415 |
+
from peft import PeftModel, PeftConfig
|
| 416 |
+
|
| 417 |
+
# Load the first model by default
|
| 418 |
+
load_model(list(MODELS.keys())[0])
|
| 419 |
+
|
| 420 |
+
demo.launch(server_name="0.0.0.0", server_port=7812)
|
| 421 |
+
#demo.launch()
|
| 422 |
+
else:
|
| 423 |
+
print("Failed to install some requirements")
|
detector.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import subprocess
|
| 4 |
+
from typing import Union, List, Dict, Optional
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
|
| 7 |
+
class TextDetector:
|
| 8 |
+
def __init__(self, output_dir: Optional[str] = None):
|
| 9 |
+
"""
|
| 10 |
+
Initialize the text detector.
|
| 11 |
+
|
| 12 |
+
Args:
|
| 13 |
+
output_dir: Optional directory to save results. If None, uses default surya_detect output directory.
|
| 14 |
+
"""
|
| 15 |
+
self.output_dir = output_dir
|
| 16 |
+
|
| 17 |
+
def process_input(self,
|
| 18 |
+
data_path: Union[str, Path],
|
| 19 |
+
save_images: bool = False,
|
| 20 |
+
page_range: Optional[str] = None) -> Dict:
|
| 21 |
+
"""
|
| 22 |
+
Process input file or directory using surya_detect.
|
| 23 |
+
|
| 24 |
+
Args:
|
| 25 |
+
data_path: Path to image, PDF, or directory of images/PDFs
|
| 26 |
+
save_images: Whether to save images of pages and detected text lines
|
| 27 |
+
page_range: Optional page range to process in PDFs (e.g., "0,5-10,20")
|
| 28 |
+
|
| 29 |
+
Returns:
|
| 30 |
+
Dictionary containing detection results
|
| 31 |
+
"""
|
| 32 |
+
# Convert to Path object if string
|
| 33 |
+
data_path = Path(data_path)
|
| 34 |
+
|
| 35 |
+
# Build surya_detect command
|
| 36 |
+
cmd = ["surya_detect", str(data_path)]
|
| 37 |
+
|
| 38 |
+
if save_images:
|
| 39 |
+
cmd.append("--images")
|
| 40 |
+
|
| 41 |
+
if self.output_dir:
|
| 42 |
+
cmd.extend(["--output_dir", self.output_dir])
|
| 43 |
+
|
| 44 |
+
if page_range:
|
| 45 |
+
cmd.extend(["--page_range", page_range])
|
| 46 |
+
|
| 47 |
+
# Run surya_detect
|
| 48 |
+
try:
|
| 49 |
+
subprocess.run(cmd, check=True)
|
| 50 |
+
except subprocess.CalledProcessError as e:
|
| 51 |
+
raise RuntimeError(f"Error running surya_detect: {e}")
|
| 52 |
+
|
| 53 |
+
# Read and return results
|
| 54 |
+
return self._read_results(data_path)
|
| 55 |
+
|
| 56 |
+
def _read_results(self, data_path: Path) -> Dict:
|
| 57 |
+
"""
|
| 58 |
+
Read and parse the results.json file generated by surya_detect.
|
| 59 |
+
|
| 60 |
+
Args:
|
| 61 |
+
data_path: Path to the input file/directory
|
| 62 |
+
|
| 63 |
+
Returns:
|
| 64 |
+
Dictionary containing detection results
|
| 65 |
+
"""
|
| 66 |
+
# Determine results file path
|
| 67 |
+
if self.output_dir:
|
| 68 |
+
# surya_detect creates a subdirectory with the input filename
|
| 69 |
+
input_name = data_path.stem
|
| 70 |
+
results_path = Path(self.output_dir) / input_name / "results.json"
|
| 71 |
+
else:
|
| 72 |
+
# Default surya_detect output location
|
| 73 |
+
results_path = data_path.parent / "results.json"
|
| 74 |
+
|
| 75 |
+
if not results_path.exists():
|
| 76 |
+
raise FileNotFoundError(f"Results file not found at {results_path}")
|
| 77 |
+
|
| 78 |
+
# Read and parse results
|
| 79 |
+
with open(results_path, 'r') as f:
|
| 80 |
+
results = json.load(f)
|
| 81 |
+
|
| 82 |
+
return results
|
| 83 |
+
|
| 84 |
+
def get_text_regions(self, results: Dict, filename: str) -> List[Dict]:
|
| 85 |
+
"""
|
| 86 |
+
Extract text regions from detection results for a specific file.
|
| 87 |
+
|
| 88 |
+
Args:
|
| 89 |
+
results: Detection results dictionary
|
| 90 |
+
filename: Name of the file to get regions for (without extension)
|
| 91 |
+
|
| 92 |
+
Returns:
|
| 93 |
+
List of dictionaries containing text regions for each page
|
| 94 |
+
"""
|
| 95 |
+
if filename not in results:
|
| 96 |
+
raise KeyError(f"No results found for file {filename}")
|
| 97 |
+
|
| 98 |
+
return results[filename]
|
| 99 |
+
|
| 100 |
+
def get_page_regions(self, results: Dict, filename: str, page_num: int) -> Dict:
|
| 101 |
+
"""
|
| 102 |
+
Get text regions for a specific page of a file.
|
| 103 |
+
|
| 104 |
+
Args:
|
| 105 |
+
results: Detection results dictionary
|
| 106 |
+
filename: Name of the file (without extension)
|
| 107 |
+
page_num: Page number (0-based)
|
| 108 |
+
|
| 109 |
+
Returns:
|
| 110 |
+
Dictionary containing text regions for the specified page
|
| 111 |
+
"""
|
| 112 |
+
regions = self.get_text_regions(results, filename)
|
| 113 |
+
|
| 114 |
+
if page_num >= len(regions):
|
| 115 |
+
raise IndexError(f"Page {page_num} not found in results")
|
| 116 |
+
|
| 117 |
+
return regions[page_num]
|
| 118 |
+
|
| 119 |
+
def get_text_lines(self, page_regions: Dict) -> List[Dict]:
|
| 120 |
+
"""
|
| 121 |
+
Extract text lines from page regions.
|
| 122 |
+
|
| 123 |
+
Args:
|
| 124 |
+
page_regions: Dictionary containing page detection results
|
| 125 |
+
|
| 126 |
+
Returns:
|
| 127 |
+
List of dictionaries containing text line information
|
| 128 |
+
"""
|
| 129 |
+
return page_regions.get('bboxes', [])
|
| 130 |
+
|
| 131 |
+
def get_vertical_lines(self, page_regions: Dict) -> List[Dict]:
|
| 132 |
+
"""
|
| 133 |
+
Extract vertical lines from page regions.
|
| 134 |
+
|
| 135 |
+
Args:
|
| 136 |
+
page_regions: Dictionary containing page detection results
|
| 137 |
+
|
| 138 |
+
Returns:
|
| 139 |
+
List of dictionaries containing vertical line information
|
| 140 |
+
"""
|
| 141 |
+
return page_regions.get('vertical_lines', [])
|
example.pdf
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:525262d9de0efaf83a0c8559d58d6f11f13dec1c319ff10a70a463047fa5ff80
|
| 3 |
+
size 100352
|
hw_1_sl.png
ADDED
|
hw_2_sl.jpg
ADDED
|
hw_3_sl.png
ADDED
|
hw_4_sl.png
ADDED
|
ml.png
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
peft
|
| 3 |
+
surya-ocr==0.13.1
|
type_1_sl.png
ADDED
|
type_2_sl.png
ADDED
|