Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
febf67e
1
Parent(s):
5ef23ad
app.py
CHANGED
@@ -5,46 +5,28 @@ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
|
5 |
import tempfile
|
6 |
import os
|
7 |
|
8 |
-
#
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
10 |
BATCH_SIZE = 8
|
11 |
FILE_LIMIT_MB = 1000
|
12 |
CHUNK_LENGTH_S = 10
|
13 |
STRIDE_LENGTH_S = [3,2]
|
14 |
|
15 |
-
#
|
16 |
device = 0 if torch.cuda.is_available() else "cpu"
|
17 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
torch_dtype=torch_dtype,
|
23 |
-
low_cpu_mem_usage=True,
|
24 |
-
use_safetensors=True
|
25 |
-
)
|
26 |
-
model.to(device)
|
27 |
-
|
28 |
-
# Initialize processor
|
29 |
-
processor = AutoProcessor.from_pretrained(MODEL_ID)
|
30 |
-
|
31 |
-
# Single pipeline initialization with all components
|
32 |
-
pipe = pipeline(
|
33 |
-
"automatic-speech-recognition",
|
34 |
-
model=model,
|
35 |
-
tokenizer=processor.tokenizer,
|
36 |
-
feature_extractor=processor.feature_extractor,
|
37 |
-
chunk_length_s=CHUNK_LENGTH_S,
|
38 |
-
stride_length_s=STRIDE_LENGTH_S,
|
39 |
-
batch_size=BATCH_SIZE,
|
40 |
-
torch_dtype=torch_dtype,
|
41 |
-
device=device,
|
42 |
-
)
|
43 |
-
|
44 |
-
# Define the generation arguments
|
45 |
|
46 |
# Define optimized generation arguments
|
47 |
-
def get_generate_kwargs(is_short_audio=False):
|
48 |
"""
|
49 |
Get appropriate generation parameters based on audio length.
|
50 |
Short audio transcription benefits from different parameters.
|
@@ -72,29 +54,81 @@ def get_generate_kwargs(is_short_audio=False):
|
|
72 |
"repetition_penalty": 1.2, # Light penalty for repeated tokens
|
73 |
}
|
74 |
|
75 |
-
# IMPORTANT: Fix for forced_decoder_ids error
|
76 |
-
# Remove forced_decoder_ids from the model's generation config
|
77 |
-
if hasattr(model.generation_config, 'forced_decoder_ids'):
|
78 |
-
print("Removing forced_decoder_ids from generation config")
|
79 |
-
model.generation_config.forced_decoder_ids = None
|
80 |
-
|
81 |
-
# Also check if it's in the model config
|
82 |
-
if hasattr(model.config, 'forced_decoder_ids'):
|
83 |
-
print("Removing forced_decoder_ids from model config")
|
84 |
-
delattr(model.config, 'forced_decoder_ids')
|
85 |
-
|
86 |
@spaces.GPU
|
87 |
-
def transcribe(audio_input):
|
|
|
|
|
88 |
if audio_input is None:
|
89 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
90 |
|
91 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
# Use the defined generate_kwargs dictionary
|
93 |
-
result =
|
94 |
audio_input,
|
95 |
-
generate_kwargs=get_generate_kwargs()
|
96 |
)
|
|
|
|
|
97 |
return result["text"]
|
|
|
98 |
except Exception as e:
|
99 |
# More detailed error logging might be helpful here if issues persist
|
100 |
print(f"Detailed Error: {e}")
|
@@ -116,6 +150,12 @@ file_transcribe = gr.Interface(
|
|
116 |
fn=transcribe,
|
117 |
inputs=[
|
118 |
gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio file"),
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
],
|
120 |
outputs=gr.Textbox(
|
121 |
label="",
|
@@ -125,11 +165,11 @@ file_transcribe = gr.Interface(
|
|
125 |
),
|
126 |
title="Transcribe Dhivehi Audio",
|
127 |
description=(
|
128 |
-
"Upload an audio file or record using your microphone to transcribe."
|
129 |
),
|
130 |
flagging_mode="never",
|
131 |
examples=[
|
132 |
-
["sample.mp3"]
|
133 |
],
|
134 |
api_name=False,
|
135 |
cache_examples=False
|
|
|
5 |
import tempfile
|
6 |
import os
|
7 |
|
8 |
+
# Available models
|
9 |
+
MODELS = {
|
10 |
+
"alakxender/whisper-small-dv-full": "Whisper Small DV Full",
|
11 |
+
#"alakxender/whisper-small-dv-mx02": "Whisper Small DV MX02"
|
12 |
+
}
|
13 |
+
|
14 |
+
# Model configuration constants
|
15 |
BATCH_SIZE = 8
|
16 |
FILE_LIMIT_MB = 1000
|
17 |
CHUNK_LENGTH_S = 10
|
18 |
STRIDE_LENGTH_S = [3,2]
|
19 |
|
20 |
+
# Global variables for device and model management
|
21 |
device = 0 if torch.cuda.is_available() else "cpu"
|
22 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
23 |
+
current_model_id = None
|
24 |
+
current_model = None
|
25 |
+
current_processor = None
|
26 |
+
current_pipe = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
# Define optimized generation arguments
|
29 |
+
def get_generate_kwargs(model, is_short_audio=False):
|
30 |
"""
|
31 |
Get appropriate generation parameters based on audio length.
|
32 |
Short audio transcription benefits from different parameters.
|
|
|
54 |
"repetition_penalty": 1.2, # Light penalty for repeated tokens
|
55 |
}
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
@spaces.GPU
|
58 |
+
def transcribe(audio_input, model_choice, progress=gr.Progress()):
|
59 |
+
global current_model_id, current_model, current_processor, current_pipe, device, torch_dtype
|
60 |
+
|
61 |
if audio_input is None:
|
62 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
63 |
|
64 |
try:
|
65 |
+
# Load the selected model if not already loaded or different model selected
|
66 |
+
if current_model_id != model_choice or current_model is None:
|
67 |
+
progress(0, desc=f"Loading model: {MODELS[model_choice]}")
|
68 |
+
print(f"Loading model: {model_choice}")
|
69 |
+
|
70 |
+
# Initialize model with memory optimizations
|
71 |
+
progress(0.2, desc="Downloading model weights...")
|
72 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
73 |
+
model_choice,
|
74 |
+
torch_dtype=torch_dtype,
|
75 |
+
low_cpu_mem_usage=True,
|
76 |
+
use_safetensors=True
|
77 |
+
)
|
78 |
+
|
79 |
+
progress(0.4, desc="Moving model to device...")
|
80 |
+
model.to(device)
|
81 |
+
|
82 |
+
# Initialize processor
|
83 |
+
progress(0.6, desc="Loading processor...")
|
84 |
+
processor = AutoProcessor.from_pretrained(model_choice)
|
85 |
+
|
86 |
+
# Single pipeline initialization with all components
|
87 |
+
progress(0.8, desc="Creating pipeline...")
|
88 |
+
pipe = pipeline(
|
89 |
+
"automatic-speech-recognition",
|
90 |
+
model=model,
|
91 |
+
tokenizer=processor.tokenizer,
|
92 |
+
feature_extractor=processor.feature_extractor,
|
93 |
+
chunk_length_s=CHUNK_LENGTH_S,
|
94 |
+
stride_length_s=STRIDE_LENGTH_S,
|
95 |
+
batch_size=BATCH_SIZE,
|
96 |
+
torch_dtype=torch_dtype,
|
97 |
+
device=device,
|
98 |
+
)
|
99 |
+
|
100 |
+
# IMPORTANT: Fix for forced_decoder_ids error
|
101 |
+
progress(0.9, desc="Configuring model...")
|
102 |
+
# Remove forced_decoder_ids from the model's generation config
|
103 |
+
if hasattr(model.generation_config, 'forced_decoder_ids'):
|
104 |
+
print("Removing forced_decoder_ids from generation config")
|
105 |
+
model.generation_config.forced_decoder_ids = None
|
106 |
+
|
107 |
+
# Also check if it's in the model config
|
108 |
+
if hasattr(model.config, 'forced_decoder_ids'):
|
109 |
+
print("Removing forced_decoder_ids from model config")
|
110 |
+
delattr(model.config, 'forced_decoder_ids')
|
111 |
+
|
112 |
+
# Update global variables
|
113 |
+
current_model_id = model_choice
|
114 |
+
current_model = model
|
115 |
+
current_processor = processor
|
116 |
+
current_pipe = pipe
|
117 |
+
|
118 |
+
print(f"Model {model_choice} loaded successfully on {device}")
|
119 |
+
|
120 |
+
# Start transcription
|
121 |
+
progress(0.95, desc="Processing audio...")
|
122 |
+
|
123 |
# Use the defined generate_kwargs dictionary
|
124 |
+
result = current_pipe(
|
125 |
audio_input,
|
126 |
+
generate_kwargs=get_generate_kwargs(current_model)
|
127 |
)
|
128 |
+
|
129 |
+
progress(1.0, desc="Transcription complete!")
|
130 |
return result["text"]
|
131 |
+
|
132 |
except Exception as e:
|
133 |
# More detailed error logging might be helpful here if issues persist
|
134 |
print(f"Detailed Error: {e}")
|
|
|
150 |
fn=transcribe,
|
151 |
inputs=[
|
152 |
gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio file"),
|
153 |
+
gr.Dropdown(
|
154 |
+
choices=list(MODELS.keys()),
|
155 |
+
value=list(MODELS.keys())[0], # Default to first model
|
156 |
+
label="Select Model",
|
157 |
+
info="Choose the Whisper model for transcription"
|
158 |
+
)
|
159 |
],
|
160 |
outputs=gr.Textbox(
|
161 |
label="",
|
|
|
165 |
),
|
166 |
title="Transcribe Dhivehi Audio",
|
167 |
description=(
|
168 |
+
"Upload an audio file or record using your microphone to transcribe. Select your preferred model from the dropdown."
|
169 |
),
|
170 |
flagging_mode="never",
|
171 |
examples=[
|
172 |
+
["sample.mp3", "alakxender/whisper-small-dv-full"]
|
173 |
],
|
174 |
api_name=False,
|
175 |
cache_examples=False
|