|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tests for matchers_ops.""" |
|
|
|
import numpy as np |
|
from scipy import optimize |
|
import tensorflow as tf |
|
|
|
from deeplab2.model.loss import matchers_ops |
|
|
|
|
|
class MatchersOpsTest(tf.test.TestCase): |
|
|
|
def hungarian_matching_tpu(self, cost_matrix): |
|
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='') |
|
tf.config.experimental_connect_to_cluster(resolver) |
|
tf.tpu.experimental.initialize_tpu_system(resolver) |
|
strategy = tf.distribute.TPUStrategy(resolver) |
|
|
|
@tf.function |
|
def function(): |
|
costs = tf.constant(cost_matrix, cost_matrix.dtype, cost_matrix.shape) |
|
return matchers_ops.hungarian_matching(costs) |
|
|
|
return strategy.run(function).values[0].numpy() |
|
|
|
def testLinearSumAssignment(self): |
|
"""Check a simple 2D test case of the Linear Sum Assignment problem. |
|
|
|
Ensures that the implementation of the matching algorithm is correct |
|
and functional on TPUs. |
|
""" |
|
cost_matrix = np.array([[[4, 1, 3], [2, 0, 5], [3, 2, 2]]], |
|
dtype=np.float32) |
|
adjacency_output = self.hungarian_matching_tpu(cost_matrix) |
|
|
|
correct_output = np.array([ |
|
[0, 1, 0], |
|
[1, 0, 0], |
|
[0, 0, 1], |
|
], dtype=bool) |
|
self.assertAllEqual(adjacency_output[0], correct_output) |
|
|
|
def testBatchedLinearSumAssignment(self): |
|
"""Check a batched case of the Linear Sum Assignment Problem. |
|
|
|
Ensures that a correct solution is found for all inputted problems within |
|
a batch. |
|
""" |
|
cost_matrix = np.array([ |
|
[[4, 1, 3], [2, 0, 5], [3, 2, 2]], |
|
[[1, 4, 3], [0, 2, 5], [2, 3, 2]], |
|
[[1, 3, 4], [0, 5, 2], [2, 2, 3]], |
|
], |
|
dtype=np.float32) |
|
|
|
adjacency_output = self.hungarian_matching_tpu(cost_matrix) |
|
|
|
|
|
correct_output = np.array([ |
|
[[0, 1, 0], [1, 0, 0], [0, 0, 1]], |
|
[[1, 0, 0], [0, 1, 0], [0, 0, 1]], |
|
[[1, 0, 0], [0, 0, 1], [0, 1, 0]], |
|
], |
|
dtype=bool) |
|
self.assertAllClose(adjacency_output, correct_output) |
|
|
|
def testMaximumBipartiteMatching(self): |
|
"""Check that the maximum bipartite match assigns the correct numbers.""" |
|
adj_matrix = tf.cast([[ |
|
[1, 0, 0, 0, 1], |
|
[0, 1, 0, 1, 0], |
|
[0, 0, 1, 0, 0], |
|
[0, 1, 0, 0, 0], |
|
[1, 0, 0, 0, 0], |
|
]], tf.bool) |
|
_, assignment = matchers_ops._maximum_bipartite_matching(adj_matrix) |
|
self.assertEqual(np.sum(assignment), 5) |
|
|
|
def testAssignmentMatchesScipy(self): |
|
"""Check that the Linear Sum Assignment matches the Scipy implementation.""" |
|
batch_size, num_elems = 2, 25 |
|
weights = tf.random.uniform((batch_size, num_elems, num_elems), |
|
minval=0., |
|
maxval=1.) |
|
assignment = matchers_ops.hungarian_matching(weights) |
|
actual_weights = weights.numpy() |
|
actual_assignment = assignment.numpy() |
|
|
|
for idx in range(batch_size): |
|
_, scipy_assignment = optimize.linear_sum_assignment(actual_weights[idx]) |
|
hungarian_assignment = np.where(actual_assignment[idx])[1] |
|
|
|
self.assertAllEqual(hungarian_assignment, scipy_assignment) |
|
|
|
def testAssignmentRunsOnTPU(self): |
|
"""Check that a batch of assignments matches Scipy.""" |
|
batch_size, num_elems = 4, 100 |
|
cost_matrix = np.random.rand(batch_size, num_elems, num_elems) |
|
|
|
actual_assignment = self.hungarian_matching_tpu(cost_matrix) |
|
|
|
for idx in range(batch_size): |
|
_, scipy_assignment = optimize.linear_sum_assignment(cost_matrix[idx]) |
|
hungarian_assignment = np.where(actual_assignment[idx])[1] |
|
self.assertAllEqual(hungarian_assignment, scipy_assignment) |
|
|
|
def testLargeBatch(self): |
|
"""Check large-batch performance of Hungarian matcher. |
|
|
|
Useful for testing efficiency of the proposed solution and regression |
|
testing. Current solution is thought to be quadratic in nature, yielding |
|
significant slowdowns when the number of queries is increased. |
|
""" |
|
batch_size, num_elems = 64, 100 |
|
cost_matrix = np.abs( |
|
np.random.normal(size=(batch_size, num_elems, num_elems))) |
|
|
|
_ = self.hungarian_matching_tpu(cost_matrix) |
|
|
|
|
|
if __name__ == '__main__': |
|
tf.test.main() |
|
|