|
import os |
|
from threading import Thread |
|
import gradio as gr |
|
import spaces |
|
import torch |
|
import edge_tts |
|
import asyncio |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor |
|
from transformers.image_utils import load_image |
|
from huggingface_hub import InferenceClient |
|
import time |
|
|
|
|
|
model_id = "prithivMLmods/FastThink-0.5B-Tiny" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16, |
|
) |
|
model.eval() |
|
|
|
|
|
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" |
|
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) |
|
model_m = Qwen2VLForConditionalGeneration.from_pretrained( |
|
MODEL_ID, |
|
trust_remote_code=True, |
|
torch_dtype=torch.float16 |
|
).to("cuda").eval() |
|
|
|
TTS_VOICES = [ |
|
"en-US-JennyNeural", |
|
"en-US-GuyNeural", |
|
] |
|
|
|
def image_gen(prompt): |
|
"""Generate image using API""" |
|
try: |
|
client = InferenceClient("prithivMLmods/STABLE-HAMSTER") |
|
return client.text_to_image(prompt) |
|
except: |
|
client_flux = InferenceClient("black-forest-labs/FLUX.1-schnell") |
|
return client_flux.text_to_image(prompt) |
|
|
|
async def text_to_speech(text: str, voice: str, output_file="output.mp3"): |
|
"""Convert text to speech using Edge TTS and save as MP3""" |
|
communicate = edge_tts.Communicate(text, voice) |
|
await communicate.save(output_file) |
|
return output_file |
|
|
|
def clean_chat_history(chat_history): |
|
return [msg for msg in chat_history if isinstance(msg, dict) and isinstance(msg.get("content"), str)] |
|
|
|
@spaces.GPU |
|
def generate(input_dict: dict, chat_history: list[dict], max_new_tokens=1024, temperature=0.6, top_p=0.9, top_k=50, repetition_penalty=1.2): |
|
"""Generates chatbot responses with multimodal input, TTS, and image generation.""" |
|
text = input_dict["text"] |
|
files = input_dict.get("files", []) |
|
images = [load_image(file) for file in files] if files else [] |
|
|
|
if text.startswith("@tts"): |
|
voice_index = next((i for i in range(1, 3) if text.startswith(f"@tts{i}")), None) |
|
if voice_index: |
|
voice = TTS_VOICES[voice_index - 1] |
|
text = text.replace(f"@tts{voice_index}", "").strip() |
|
conversation = [{"role": "user", "content": text}] |
|
else: |
|
voice = None |
|
elif text.startswith("@image"): |
|
query = text.replace("@image", "").strip() |
|
yield "Generating Image, Please wait..." |
|
image = image_gen(query) |
|
yield gr.Image(image) |
|
else: |
|
conversation = clean_chat_history(chat_history) + [{"role": "user", "content": text}] |
|
if images: |
|
messages = [{ |
|
"role": "user", |
|
"content": [ |
|
*[{"type": "image", "image": img} for img in images], |
|
{"type": "text", "text": text}, |
|
] |
|
}] |
|
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda") |
|
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) |
|
thread = Thread(target=model_m.generate, kwargs={**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}) |
|
thread.start() |
|
buffer = "" |
|
for new_text in streamer: |
|
buffer += new_text.replace("<|im_end|>", "") |
|
yield buffer |
|
else: |
|
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device) |
|
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) |
|
thread = Thread(target=model.generate, kwargs={ |
|
"input_ids": input_ids, |
|
"streamer": streamer, |
|
"max_new_tokens": max_new_tokens, |
|
"do_sample": True, |
|
"top_p": top_p, |
|
"top_k": top_k, |
|
"temperature": temperature, |
|
"num_beams": 1, |
|
"repetition_penalty": repetition_penalty, |
|
}) |
|
thread.start() |
|
response = "".join([new_text for new_text in streamer]) |
|
yield response |
|
if voice: |
|
output_file = asyncio.run(text_to_speech(response, voice)) |
|
yield gr.Audio(output_file, autoplay=True) |
|
|
|
demo = gr.ChatInterface( |
|
fn=generate, |
|
additional_inputs=[ |
|
gr.Slider(label="Max new tokens", minimum=1, maximum=2048, step=1, value=1024), |
|
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), |
|
gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9), |
|
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), |
|
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), |
|
], |
|
examples=[ |
|
["@tts1 Who is Nikola Tesla?"], |
|
[{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}], |
|
["@image futuristic city at sunset"], |
|
["A train travels 60 kilometers per hour. How far will it travel in 5 hours?"], |
|
], |
|
cache_examples=False, |
|
description="# QwQ Edge 💬", |
|
fill_height=True, |
|
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), |
|
stop_btn="Stop Generation", |
|
multimodal=True, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch(share=True) |