ajit282's picture
Initial commit
946da56
import streamlit as st
from transformers import pipeline
import scipy
# Load the Bark model
@st.cache_resource # Caches the model to avoid reloading
def load_model():
return pipeline("text-to-speech", model="suno/bark")
synthesiser = load_model()
# Streamlit app layout
st.title("AI Song Generator")
st.markdown("Generate AI songs from text using Suno's Bark model! 🎵 Add special cues like `♪ lyrics ♪` or `[laughs]` for customization.")
# Input field for song lyrics
lyrics = st.text_area("Enter your song lyrics or text (e.g., ♪ Twinkle, twinkle, little star... ♪):", height=150)
# Button to trigger song generation
if st.button("Generate Song"):
if lyrics.strip():
st.info("Generating the song... This may take a few moments.")
try:
# Generate audio
result = synthesiser(lyrics, forward_params={"do_sample": True})
# Save audio to a file
audio_path = "generated_song.wav"
scipy.io.wavfile.write(audio_path, rate=result["sampling_rate"], data=result["audio"])
# Play audio
st.audio(audio_path, format="audio/wav")
st.success("Song generation complete!")
except Exception as e:
st.error(f"An error occurred: {e}")
else:
st.warning("Please provide song lyrics to generate audio.")
# Optional cleanup (use if audio files are temporary)
import os
if os.path.exists("generated_song.wav"):
os.remove("generated_song.wav")