Spaces:
Running
Running
Upload 2 files
Browse files- app.py +37 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
from datetime import datetime
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
app = FastAPI()
|
| 8 |
+
|
| 9 |
+
# Load model
|
| 10 |
+
classifier = pipeline(
|
| 11 |
+
"zero-shot-classification",
|
| 12 |
+
model="MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli"
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
# Pydantic input model
|
| 16 |
+
class EmailRequest(BaseModel):
|
| 17 |
+
email: str
|
| 18 |
+
|
| 19 |
+
# Endpoint to classify email
|
| 20 |
+
@app.post("/classify")
|
| 21 |
+
def classify_email(request: EmailRequest):
|
| 22 |
+
labels = ["Approved", "Rejected", "Unclear"]
|
| 23 |
+
result = classifier(request.email, candidate_labels=labels)
|
| 24 |
+
top_label = result['labels'][0]
|
| 25 |
+
confidence = round(result['scores'][0], 2)
|
| 26 |
+
|
| 27 |
+
# Logging
|
| 28 |
+
log_line = f"{datetime.now()} | {top_label:<9} ({confidence}) | {request.email}\n"
|
| 29 |
+
os.makedirs("logs", exist_ok=True)
|
| 30 |
+
with open("logs/inputs.log", "a", encoding="utf-8") as f:
|
| 31 |
+
f.write(log_line)
|
| 32 |
+
|
| 33 |
+
return {"label": top_label, "confidence": confidence}
|
| 34 |
+
|
| 35 |
+
if __name__ == "__main__":
|
| 36 |
+
import uvicorn
|
| 37 |
+
uvicorn.run("app:app", host="0.0.0.0", port=7860)
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn
|
| 3 |
+
transformers
|
| 4 |
+
torch
|