Spaces:
Runtime error
Runtime error
| import json | |
| import subprocess | |
| from threading import Thread | |
| import torch | |
| import spaces | |
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer | |
| #subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
| MODEL_ID = "deepseek-ai/DeepSeek-R1" | |
| CHAT_TEMPLATE = "ΩAuto" | |
| MODEL_NAME = MODEL_ID.split("/")[-1] | |
| CONTEXT_LENGTH = 16000 | |
| COLOR = "black" | |
| EMOJI = "π€" | |
| DESCRIPTION = f"This is {MODEL_NAME} model designed for testing thinking for general AI tasks." # DescripciΓ³n predeterminada | |
| latex_delimiters_set = [{ | |
| "left": "\\(", | |
| "right": "\\)", | |
| "display": False | |
| }, { | |
| "left": "\\begin{equation}", | |
| "right": "\\end{equation}", | |
| "display": True | |
| }, { | |
| "left": "\\begin{align}", | |
| "right": "\\end{align}", | |
| "display": True | |
| }, { | |
| "left": "\\begin{alignat}", | |
| "right": "\\end{alignat}", | |
| "display": True | |
| }, { | |
| "left": "\\begin{gather}", | |
| "right": "\\end{gather}", | |
| "display": True | |
| }, { | |
| "left": "\\begin{CD}", | |
| "right": "\\end{CD}", | |
| "display": True | |
| }, { | |
| "left": "\\[", | |
| "right": "\\]", | |
| "display": True | |
| }] | |
| def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p): | |
| # Format history with a given chat template | |
| stop_tokens = ["<|endoftext|>", "<|im_end|>","|im_end|"] | |
| instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n' | |
| for user, assistant in history: | |
| instruction += f'<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n' | |
| instruction += f'<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n' | |
| print(instruction) | |
| streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
| enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True) | |
| input_ids, attention_mask = enc.input_ids, enc.attention_mask | |
| if input_ids.shape[1] > CONTEXT_LENGTH: | |
| input_ids = input_ids[:, -CONTEXT_LENGTH:] | |
| attention_mask = attention_mask[:, -CONTEXT_LENGTH:] | |
| generate_kwargs = dict( | |
| input_ids=input_ids.to(device), | |
| attention_mask=attention_mask.to(device), | |
| streamer=streamer, | |
| do_sample=True, | |
| temperature=temperature, | |
| max_new_tokens=max_new_tokens, | |
| top_k=top_k, | |
| repetition_penalty=repetition_penalty, | |
| top_p=top_p | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| outputs = [] | |
| for new_token in streamer: | |
| outputs.append(new_token) | |
| if new_token in stop_tokens: | |
| break | |
| yield "".join(outputs) | |
| # Load model | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| quantization_config = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_compute_dtype=torch.bfloat16 | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_ID, | |
| device_map="auto", | |
| #quantization_config=quantization_config, | |
| #attn_implementation="flash_attention_2", | |
| ) | |
| # Create Gradio interface | |
| gr.ChatInterface( | |
| predict, | |
| title=EMOJI + " " + MODEL_NAME, | |
| description=DESCRIPTION, | |
| additional_inputs_accordion=gr.Accordion(label="βοΈ Parameters", open=False), | |
| additional_inputs=[ | |
| gr.Textbox("You are a useful assistant. first recognize user request and then reply carfuly and thinking", label="System prompt"), | |
| gr.Slider(0, 1, 0.6, label="Temperature"), | |
| gr.Slider(0, 32000, 10000, label="Max new tokens"), | |
| gr.Slider(1, 80, 40, label="Top K sampling"), | |
| gr.Slider(0, 2, 1.1, label="Repetition penalty"), | |
| gr.Slider(0, 1, 0.95, label="Top P sampling"), | |
| ], | |
| #theme=gr.themes.Soft(primary_hue=COLOR), | |
| ).queue().launch() | |