Spaces:
Sleeping
Sleeping
add: app .py 파일 추가
Browse files- chatbot_ver1/app.py +175 -0
chatbot_ver1/app.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import yaml
|
3 |
+
import gradio as gr
|
4 |
+
from sentence_transformers import SentenceTransformer, util
|
5 |
+
import torch
|
6 |
+
import shutil
|
7 |
+
import tempfile
|
8 |
+
|
9 |
+
# 파일 경로
|
10 |
+
KNOWLEDGE_FILE = "company_knowledge.md"
|
11 |
+
PERSONA_FILE = "persona.yaml"
|
12 |
+
CHITCHAT_FILE = "chitchat.yaml"
|
13 |
+
KEYWORD_MAP_FILE = "keyword_map.yaml"
|
14 |
+
CEO_VIDEO_FILE = "ceo_video.mp4"
|
15 |
+
CEO_IMG_FILE = "ceo.jpg" # 필요시 사용
|
16 |
+
|
17 |
+
def load_yaml(file_path, default_data=None):
|
18 |
+
try:
|
19 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
20 |
+
return yaml.safe_load(f)
|
21 |
+
except Exception:
|
22 |
+
return default_data if default_data is not None else []
|
23 |
+
|
24 |
+
def parse_knowledge_base(file_path):
|
25 |
+
import re
|
26 |
+
faqs = []
|
27 |
+
if not os.path.exists(file_path):
|
28 |
+
return []
|
29 |
+
with open(file_path, encoding="utf-8") as f:
|
30 |
+
content = f.read()
|
31 |
+
# Q:\s*(...) \nA:\s*(...)\n{2,} 또는 끝
|
32 |
+
blocks = re.findall(r"Q:\s*(.*?)\nA:\s*(.*?)(?=(\n{2,}Q:|\Z))", content, re.DOTALL)
|
33 |
+
for q, a, _ in blocks:
|
34 |
+
faqs.append({"question": q.strip(), "answer": a.strip()})
|
35 |
+
return faqs
|
36 |
+
|
37 |
+
# 데이터 로드
|
38 |
+
persona = load_yaml(PERSONA_FILE, {})
|
39 |
+
chitchat_map = load_yaml(CHITCHAT_FILE, [])
|
40 |
+
keyword_map = load_yaml(KEYWORD_MAP_FILE, [])
|
41 |
+
knowledge_base = parse_knowledge_base(KNOWLEDGE_FILE)
|
42 |
+
kb_questions = [item['question'] for item in knowledge_base]
|
43 |
+
kb_answers = [item['answer'] for item in knowledge_base]
|
44 |
+
|
45 |
+
# 무료 임베딩 모델
|
46 |
+
model = SentenceTransformer('distilbert-base-multilingual-cased')
|
47 |
+
if kb_questions:
|
48 |
+
kb_embeddings = model.encode(kb_questions, convert_to_tensor=True)
|
49 |
+
else:
|
50 |
+
kb_embeddings = None
|
51 |
+
|
52 |
+
# 삭제선(취소선) 적용 함수
|
53 |
+
def apply_strike(text, del_section="6000~6500만원, 성과급 1800~2400만원"):
|
54 |
+
# 급여 정보가 포함된 답변일 때만 strike-through
|
55 |
+
if del_section in text:
|
56 |
+
return text.replace(
|
57 |
+
del_section,
|
58 |
+
f"<s>{del_section}</s>"
|
59 |
+
)
|
60 |
+
return text
|
61 |
+
|
62 |
+
# Chitchat(인사 등) 매칭
|
63 |
+
def find_chitchat(user_question):
|
64 |
+
uq = user_question.lower()
|
65 |
+
for chat in chitchat_map:
|
66 |
+
if any(kw in uq for kw in chat.get('keywords', [])):
|
67 |
+
return chat['answer']
|
68 |
+
return None
|
69 |
+
|
70 |
+
# 키워드 기반 Q 매핑 (복지: 휴가 제도, 교육, 복리후생 등 강화)
|
71 |
+
def map_user_question_to_knowledge(user_question):
|
72 |
+
uq = user_question.lower()
|
73 |
+
for item in keyword_map:
|
74 |
+
for kw in item.get('keywords', []):
|
75 |
+
if kw in uq:
|
76 |
+
return item['question']
|
77 |
+
return None
|
78 |
+
|
79 |
+
def find_answer_by_question(q):
|
80 |
+
for item in knowledge_base:
|
81 |
+
if item['question'] == q:
|
82 |
+
return item['answer']
|
83 |
+
return None
|
84 |
+
|
85 |
+
def find_answer_by_keywords(user_question):
|
86 |
+
uq = user_question.lower()
|
87 |
+
for item in knowledge_base:
|
88 |
+
for kw in item.get('keywords', []):
|
89 |
+
if kw in uq:
|
90 |
+
return item['answer']
|
91 |
+
return None
|
92 |
+
|
93 |
+
def best_faq_answer(user_question):
|
94 |
+
uq = user_question.strip()
|
95 |
+
if not uq:
|
96 |
+
return "무엇이 궁금하신지 말씀해 주세요!"
|
97 |
+
chit = find_chitchat(uq)
|
98 |
+
if chit:
|
99 |
+
return chit
|
100 |
+
# (1) 키워드맵 우선 매핑 (복지/급여 각각 분리)
|
101 |
+
mapped_q = map_user_question_to_knowledge(uq)
|
102 |
+
if mapped_q:
|
103 |
+
answer = find_answer_by_question(mapped_q)
|
104 |
+
if answer:
|
105 |
+
# 복지 분야: '연봉 수준' 답변 아닌 경우에는 삭제선 없음
|
106 |
+
if "연봉" in mapped_q:
|
107 |
+
return apply_strike(answer)
|
108 |
+
return answer
|
109 |
+
# (2) knowledge_base 직접 키워드 매칭 (복지 관련 키워드 강화되어야 함!)
|
110 |
+
answer = find_answer_by_keywords(uq)
|
111 |
+
if answer:
|
112 |
+
return answer
|
113 |
+
# (3) 임베딩 유사도 기반 soft-matching
|
114 |
+
if kb_embeddings is not None and len(kb_answers) > 0:
|
115 |
+
q_emb = model.encode([uq], convert_to_tensor=True)
|
116 |
+
scores = util.cos_sim(q_emb, kb_embeddings)[0]
|
117 |
+
best_idx = int(torch.argmax(scores))
|
118 |
+
best_question = kb_questions[best_idx]
|
119 |
+
# 복지질문인데 연봉키워드 매칭되는 경우, 복지 우선 답변을 선택하도록
|
120 |
+
# 아래 if식은 실제 복지 답변 우선 코드
|
121 |
+
복지가능 = ["복지", "휴가", "교육", "행사", "동호회", "복리후생", "제도"]
|
122 |
+
연봉가능 = ["연봉", "급여", "월급", "임금", "보상", "봉급", "처우"]
|
123 |
+
if any(w in uq for w in 복지가능) and not any(w in best_question for w in 연봉가능):
|
124 |
+
return kb_answers[best_idx]
|
125 |
+
# 삭제선은 연봉 답변에만
|
126 |
+
if "연봉" in best_question or "급여" in best_question:
|
127 |
+
return apply_strike(kb_answers[best_idx])
|
128 |
+
return kb_answers[best_idx]
|
129 |
+
# (4) fallback
|
130 |
+
return persona.get('style', {}).get('unknown_answer', "아직 준비되지 않은 질문입니다. 다른 질문도 해주세요!")
|
131 |
+
|
132 |
+
# 질문 받을 때마다 CEO 영상 복사본 임시파일로 생성 → autoplay 확실
|
133 |
+
def get_temp_video_copy():
|
134 |
+
temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
|
135 |
+
temp_filepath = temp_file.name
|
136 |
+
temp_file.close()
|
137 |
+
shutil.copyfile(CEO_VIDEO_FILE, temp_filepath)
|
138 |
+
return temp_filepath
|
139 |
+
|
140 |
+
def chat_interface(message, history):
|
141 |
+
bot_response = best_faq_answer(message)
|
142 |
+
history.append((message, bot_response))
|
143 |
+
temp_video_path = get_temp_video_copy()
|
144 |
+
# 텍스트에 html가능하면 answer에 html삭제선 유지
|
145 |
+
return history, "", gr.update(value=temp_video_path, autoplay=True, interactive=False, elem_id="ceo-video-panel")
|
146 |
+
|
147 |
+
with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
148 |
+
with gr.Row(elem_id="main-row"):
|
149 |
+
with gr.Column(scale=1, min_width=350):
|
150 |
+
video_player = gr.Video(
|
151 |
+
value=CEO_VIDEO_FILE,
|
152 |
+
autoplay=False, loop=False, interactive=False,
|
153 |
+
height=350, elem_id="ceo-video-panel"
|
154 |
+
)
|
155 |
+
with gr.Column(scale=2):
|
156 |
+
chatbot = gr.Chatbot(
|
157 |
+
label="",
|
158 |
+
height=350,
|
159 |
+
elem_id="chatbot-box",
|
160 |
+
show_copy_button=True
|
161 |
+
)
|
162 |
+
with gr.Row():
|
163 |
+
msg_input = gr.Textbox(placeholder="무엇이든 물어보세요.", scale=4, show_label=False)
|
164 |
+
send_btn = gr.Button("전송", scale=1, min_width=80)
|
165 |
+
gr.Examples(
|
166 |
+
examples=["복지 뭐 있어?", "휴가 제도 설명해줘", "연봉 알려줘", "동호회 행사?", "식사제공?", "주력제품", "조직문화"],
|
167 |
+
inputs=msg_input
|
168 |
+
)
|
169 |
+
# 연결
|
170 |
+
outputs_list = [chatbot, msg_input, video_player]
|
171 |
+
msg_input.submit(chat_interface, [msg_input, chatbot], outputs_list)
|
172 |
+
send_btn.click(chat_interface, [msg_input, chatbot], outputs_list)
|
173 |
+
|
174 |
+
if __name__ == "__main__":
|
175 |
+
demo.launch()
|