Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import gradio as gr
|
|
| 2 |
import numpy as np
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
import time
|
|
|
|
| 5 |
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
| 6 |
import pandas as pd
|
| 7 |
from sklearn.feature_extraction.text import CountVectorizer
|
|
@@ -11,30 +12,47 @@ import re
|
|
| 11 |
|
| 12 |
# Download necessary NLTK data
|
| 13 |
try:
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
nltk.download('punkt')
|
| 17 |
-
try:
|
| 18 |
-
nltk.data.find('taggers/averaged_perceptron_tagger')
|
| 19 |
-
except LookupError:
|
| 20 |
nltk.download('averaged_perceptron_tagger')
|
| 21 |
|
| 22 |
-
#
|
| 23 |
-
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
# Load Grammar Scoring Model (CoLA)
|
| 26 |
-
cola_model = AutoModelForSequenceClassification.from_pretrained("textattack/roberta-base-CoLA")
|
| 27 |
-
cola_tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-CoLA")
|
| 28 |
-
grammar_pipeline = pipeline("text-classification", model=cola_model, tokenizer=cola_tokenizer)
|
| 29 |
|
| 30 |
-
# Load Grammar Correction Model (T5)
|
| 31 |
-
correction_pipeline = pipeline("text2text-generation", model="vennify/t5-base-grammar-correction")
|
| 32 |
|
| 33 |
-
# Add sentiment analysis
|
| 34 |
-
sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
| 35 |
|
| 36 |
-
# Add fluency analysis (using BERT)
|
| 37 |
-
fluency_pipeline = pipeline("text-classification", model="textattack/bert-base-uncased-CoLA")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
# Common English filler words to detect
|
| 40 |
FILLER_WORDS = ["um", "uh", "like", "you know", "actually", "basically", "literally",
|
|
@@ -57,38 +75,56 @@ def calculate_speaking_rate(text, duration):
|
|
| 57 |
|
| 58 |
def analyze_vocabulary_richness(text):
|
| 59 |
"""Analyze vocabulary richness"""
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
if not words:
|
| 62 |
-
return 0,
|
| 63 |
|
| 64 |
# Vocabulary richness (unique words / total words)
|
| 65 |
unique_words = set(words)
|
| 66 |
richness = len(unique_words) / len(words)
|
| 67 |
|
| 68 |
-
# POS tagging
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
return richness, pos_counts
|
| 75 |
|
| 76 |
def analyze_sentence_complexity(text):
|
| 77 |
-
"""Analyze sentence complexity"""
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
def create_detailed_feedback(transcription, grammar_score, corrected_text,
|
| 94 |
sentiment, fluency, filler_ratio, speaking_rate,
|
|
@@ -152,120 +188,208 @@ def process_audio(audio):
|
|
| 152 |
|
| 153 |
start_time = time.time()
|
| 154 |
|
| 155 |
-
#
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
#
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
try:
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
except:
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
transcription = transcription_result["text"]
|
| 176 |
-
|
| 177 |
-
# Step 2: Grammar Scoring
|
| 178 |
-
score_output = grammar_pipeline(transcription)[0]
|
| 179 |
-
label = score_output["label"]
|
| 180 |
-
confidence = score_output["score"]
|
| 181 |
-
grammar_score = f"{label} ({confidence:.2f})"
|
| 182 |
-
|
| 183 |
-
# Step 3: Grammar Correction
|
| 184 |
-
corrected = correction_pipeline(transcription, max_length=128)[0]["generated_text"]
|
| 185 |
-
|
| 186 |
-
# Step 4: Sentiment Analysis
|
| 187 |
-
sentiment_result = sentiment_pipeline(transcription)[0]
|
| 188 |
-
sentiment = sentiment_result["label"]
|
| 189 |
-
sentiment_score = sentiment_result["score"]
|
| 190 |
-
|
| 191 |
-
# Step 5: Fluency Analysis
|
| 192 |
-
fluency_result = fluency_pipeline(transcription)[0]
|
| 193 |
-
fluency_score = fluency_result["score"] if fluency_result["label"] == "acceptable" else 1 - fluency_result["score"]
|
| 194 |
-
|
| 195 |
-
# Step 6: Filler Words Analysis
|
| 196 |
-
filler_count, filler_ratio = count_filler_words(transcription)
|
| 197 |
-
|
| 198 |
-
# Step 7: Speaking Rate
|
| 199 |
-
speaking_rate = calculate_speaking_rate(transcription, duration)
|
| 200 |
-
|
| 201 |
-
# Step 8: Vocabulary Richness
|
| 202 |
-
vocab_richness, pos_counts = analyze_vocabulary_richness(transcription)
|
| 203 |
-
|
| 204 |
-
# Step 9: Sentence Complexity
|
| 205 |
-
avg_words, sentence_variation = analyze_sentence_complexity(transcription)
|
| 206 |
-
|
| 207 |
-
# Create feedback
|
| 208 |
-
feedback = create_detailed_feedback(
|
| 209 |
-
transcription, grammar_score, corrected, sentiment,
|
| 210 |
-
fluency_score, filler_ratio, speaking_rate, vocab_richness, avg_words
|
| 211 |
-
)
|
| 212 |
-
|
| 213 |
-
# Create metrics visualization
|
| 214 |
-
fig, ax = plt.subplots(figsize=(10, 6))
|
| 215 |
-
|
| 216 |
-
# Define metrics for radar chart
|
| 217 |
-
categories = ['Grammar', 'Fluency', 'Vocabulary', 'Speaking Rate', 'Clarity']
|
| 218 |
-
|
| 219 |
-
# Normalize scores between 0 and 1
|
| 220 |
-
grammar_norm = confidence if label == "acceptable" else 1 - confidence
|
| 221 |
-
speaking_rate_norm = max(0, min(1, 1 - abs((speaking_rate - 140) / 100))) # Optimal around 140 wpm
|
| 222 |
-
|
| 223 |
-
values = [
|
| 224 |
-
grammar_norm,
|
| 225 |
-
fluency_score,
|
| 226 |
-
vocab_richness,
|
| 227 |
-
speaking_rate_norm,
|
| 228 |
-
1 - filler_ratio # Lower filler ratio is better
|
| 229 |
-
]
|
| 230 |
-
|
| 231 |
-
# Complete the loop for the radar chart
|
| 232 |
-
values += values[:1]
|
| 233 |
-
categories += categories[:1]
|
| 234 |
-
|
| 235 |
-
# Convert to radians and plot
|
| 236 |
-
angles = np.linspace(0, 2*np.pi, len(categories), endpoint=False).tolist()
|
| 237 |
-
angles += angles[:1]
|
| 238 |
-
|
| 239 |
-
ax.plot(angles, values, linewidth=2, linestyle='solid')
|
| 240 |
-
ax.fill(angles, values, alpha=0.25)
|
| 241 |
-
ax.set_yticklabels([])
|
| 242 |
-
ax.set_xticks(angles[:-1])
|
| 243 |
-
ax.set_xticklabels(categories[:-1])
|
| 244 |
-
ax.grid(True)
|
| 245 |
-
plt.title('Speaking Performance Metrics', size=15, color='navy', y=1.1)
|
| 246 |
-
|
| 247 |
-
# Create detailed analysis text
|
| 248 |
-
processing_time = time.time() - start_time
|
| 249 |
-
detailed_analysis = f"""
|
| 250 |
-
## Detailed Speech Analysis
|
| 251 |
|
| 252 |
-
|
| 253 |
-
|
| 254 |
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
-
### Word Types Used:
|
| 265 |
-
{', '.join([f"{k}: {v}" for k, v in sorted(pos_counts.items(), key=lambda x: x[1], reverse=True)[:5]])}
|
| 266 |
-
"""
|
| 267 |
-
|
| 268 |
-
return transcription, grammar_score, corrected, feedback, fig, detailed_analysis
|
| 269 |
|
| 270 |
# Create theme
|
| 271 |
theme = gr.themes.Soft(
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
import time
|
| 5 |
+
import os
|
| 6 |
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
| 7 |
import pandas as pd
|
| 8 |
from sklearn.feature_extraction.text import CountVectorizer
|
|
|
|
| 12 |
|
| 13 |
# Download necessary NLTK data
|
| 14 |
try:
|
| 15 |
+
# Make the download more reliable by specifying download directory
|
| 16 |
+
nltk_data_dir = '/home/user/nltk_data'
|
| 17 |
+
os.makedirs(nltk_data_dir, exist_ok=True)
|
| 18 |
+
|
| 19 |
+
# Download all required resources
|
| 20 |
+
nltk.download('punkt', download_dir=nltk_data_dir)
|
| 21 |
+
nltk.download('averaged_perceptron_tagger', download_dir=nltk_data_dir)
|
| 22 |
+
|
| 23 |
+
# Set the data path to include our custom directory
|
| 24 |
+
nltk.data.path.insert(0, nltk_data_dir)
|
| 25 |
+
except Exception as e:
|
| 26 |
+
print(f"NLTK download issue: {e}")
|
| 27 |
+
# Fallback simple approach if the directory approach fails
|
| 28 |
nltk.download('punkt')
|
|
|
|
|
|
|
|
|
|
| 29 |
nltk.download('averaged_perceptron_tagger')
|
| 30 |
|
| 31 |
+
# Add error handling around model loading
|
| 32 |
+
try:
|
| 33 |
+
# Load Whisper for ASR
|
| 34 |
+
asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-large-v3")
|
| 35 |
|
| 36 |
+
# Load Grammar Scoring Model (CoLA)
|
| 37 |
+
cola_model = AutoModelForSequenceClassification.from_pretrained("textattack/roberta-base-CoLA")
|
| 38 |
+
cola_tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-CoLA")
|
| 39 |
+
grammar_pipeline = pipeline("text-classification", model=cola_model, tokenizer=cola_tokenizer)
|
| 40 |
|
| 41 |
+
# Load Grammar Correction Model (T5)
|
| 42 |
+
correction_pipeline = pipeline("text2text-generation", model="vennify/t5-base-grammar-correction")
|
| 43 |
|
| 44 |
+
# Add sentiment analysis
|
| 45 |
+
sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
| 46 |
|
| 47 |
+
# Add fluency analysis (using BERT)
|
| 48 |
+
fluency_pipeline = pipeline("text-classification", model="textattack/bert-base-uncased-CoLA")
|
| 49 |
+
|
| 50 |
+
# Set variables to track loaded models
|
| 51 |
+
MODELS_LOADED = True
|
| 52 |
+
except Exception as e:
|
| 53 |
+
print(f"Error loading models: {e}")
|
| 54 |
+
# Set variable to track failed model loading
|
| 55 |
+
MODELS_LOADED = False
|
| 56 |
|
| 57 |
# Common English filler words to detect
|
| 58 |
FILLER_WORDS = ["um", "uh", "like", "you know", "actually", "basically", "literally",
|
|
|
|
| 75 |
|
| 76 |
def analyze_vocabulary_richness(text):
|
| 77 |
"""Analyze vocabulary richness"""
|
| 78 |
+
# Split text by simple regex instead of using word_tokenize to avoid NLTK issues
|
| 79 |
+
try:
|
| 80 |
+
# Try using word_tokenize first
|
| 81 |
+
words = word_tokenize(text.lower())
|
| 82 |
+
except LookupError:
|
| 83 |
+
# Fallback to simple regex-based tokenization if NLTK fails
|
| 84 |
+
words = re.findall(r'\b\w+\b', text.lower())
|
| 85 |
+
|
| 86 |
if not words:
|
| 87 |
+
return 0, {}
|
| 88 |
|
| 89 |
# Vocabulary richness (unique words / total words)
|
| 90 |
unique_words = set(words)
|
| 91 |
richness = len(unique_words) / len(words)
|
| 92 |
|
| 93 |
+
# Use simple POS tagging or skip it if NLTK fails
|
| 94 |
+
try:
|
| 95 |
+
pos_tags = nltk.pos_tag(words)
|
| 96 |
+
pos_counts = {}
|
| 97 |
+
for _, tag in pos_tags:
|
| 98 |
+
pos_counts[tag] = pos_counts.get(tag, 0) + 1
|
| 99 |
+
except Exception:
|
| 100 |
+
# Return simplified count if POS tagging fails
|
| 101 |
+
pos_counts = {"WORD": len(words), "UNIQUE": len(unique_words)}
|
| 102 |
|
| 103 |
return richness, pos_counts
|
| 104 |
|
| 105 |
def analyze_sentence_complexity(text):
|
| 106 |
+
"""Analyze sentence complexity with error handling"""
|
| 107 |
+
try:
|
| 108 |
+
# Simple sentence splitting by punctuation
|
| 109 |
+
sentences = re.split(r'[.!?]+', text)
|
| 110 |
+
sentences = [s.strip() for s in sentences if s.strip()]
|
| 111 |
+
|
| 112 |
+
if not sentences:
|
| 113 |
+
return 0, 0
|
| 114 |
+
|
| 115 |
+
# Average words per sentence
|
| 116 |
+
words_per_sentence = [len(s.split()) for s in sentences]
|
| 117 |
+
avg_words = sum(words_per_sentence) / len(sentences)
|
| 118 |
+
|
| 119 |
+
# Sentence length variation (standard deviation)
|
| 120 |
+
sentence_length_variation = np.std(words_per_sentence) if len(sentences) > 1 else 0
|
| 121 |
+
|
| 122 |
+
return avg_words, sentence_length_variation
|
| 123 |
+
except Exception:
|
| 124 |
+
# In case of any error, return simple defaults
|
| 125 |
+
word_count = len(text.split())
|
| 126 |
+
# Assume approximately 15 words per sentence if we can't detect
|
| 127 |
+
return word_count / max(1, text.count('.') + text.count('!') + text.count('?')), 0
|
| 128 |
|
| 129 |
def create_detailed_feedback(transcription, grammar_score, corrected_text,
|
| 130 |
sentiment, fluency, filler_ratio, speaking_rate,
|
|
|
|
| 188 |
|
| 189 |
start_time = time.time()
|
| 190 |
|
| 191 |
+
# Check if models loaded properly
|
| 192 |
+
if 'MODELS_LOADED' in globals() and not MODELS_LOADED:
|
| 193 |
+
return ("Models failed to load. Please check the logs for details.",
|
| 194 |
+
"Error", "Error", "Unable to process audio due to model loading issues.",
|
| 195 |
+
None, "## Error\nThe required models couldn't be loaded. Please check the system configuration.")
|
| 196 |
+
|
| 197 |
+
try:
|
| 198 |
+
# Get audio duration (assuming audio[1] contains the sample rate)
|
| 199 |
+
sample_rate = 16000 # Default if we can't determine
|
| 200 |
+
if isinstance(audio, tuple) and len(audio) > 1:
|
| 201 |
+
sample_rate = audio[1]
|
| 202 |
+
|
| 203 |
+
# For file uploads, we need to handle differently
|
| 204 |
+
duration = 0
|
| 205 |
+
if isinstance(audio, str):
|
| 206 |
+
# This is a file path
|
| 207 |
+
try:
|
| 208 |
+
import librosa
|
| 209 |
+
y, sr = librosa.load(audio, sr=None)
|
| 210 |
+
duration = librosa.get_duration(y=y, sr=sr)
|
| 211 |
+
except Exception as e:
|
| 212 |
+
print(f"Error getting duration: {e}")
|
| 213 |
+
# Estimate duration based on file size
|
| 214 |
+
try:
|
| 215 |
+
file_size = os.path.getsize(audio)
|
| 216 |
+
# Rough estimate: 16kHz, 16-bit audio is about 32KB per second
|
| 217 |
+
duration = file_size / 32000
|
| 218 |
+
except:
|
| 219 |
+
duration = 10 # Default to 10 seconds if we can't determine
|
| 220 |
+
else:
|
| 221 |
+
# Assuming a tuple with (samples, sample_rate)
|
| 222 |
+
try:
|
| 223 |
+
duration = len(audio[0]) / sample_rate if sample_rate > 0 else 0
|
| 224 |
+
except:
|
| 225 |
+
duration = 10 # Default duration
|
| 226 |
+
|
| 227 |
+
# Step 1: Transcription
|
| 228 |
+
try:
|
| 229 |
+
transcription_result = asr_pipeline(audio)
|
| 230 |
+
transcription = transcription_result["text"]
|
| 231 |
+
except Exception as e:
|
| 232 |
+
print(f"Transcription error: {e}")
|
| 233 |
+
return ("Error in speech recognition. Please try again.",
|
| 234 |
+
"Error", "Error", "There was an error processing your audio.",
|
| 235 |
+
None, f"## Error\nError in speech recognition: {str(e)[:100]}...")
|
| 236 |
+
|
| 237 |
+
if not transcription or transcription.strip() == "":
|
| 238 |
+
return ("No speech detected. Please speak louder or check your microphone.",
|
| 239 |
+
"N/A", "N/A", "No speech detected in the audio.",
|
| 240 |
+
None, "## No Speech Detected\nPlease try recording again with clearer speech.")
|
| 241 |
+
|
| 242 |
+
# Step 2: Grammar Scoring
|
| 243 |
try:
|
| 244 |
+
score_output = grammar_pipeline(transcription)[0]
|
| 245 |
+
label = score_output["label"]
|
| 246 |
+
confidence = score_output["score"]
|
| 247 |
+
grammar_score = f"{label} ({confidence:.2f})"
|
| 248 |
+
except Exception as e:
|
| 249 |
+
print(f"Grammar scoring error: {e}")
|
| 250 |
+
label = "UNKNOWN"
|
| 251 |
+
confidence = 0.5
|
| 252 |
+
grammar_score = "Could not analyze grammar"
|
| 253 |
+
|
| 254 |
+
# Step 3: Grammar Correction
|
| 255 |
+
try:
|
| 256 |
+
corrected = correction_pipeline(transcription, max_length=128)[0]["generated_text"]
|
| 257 |
+
except Exception as e:
|
| 258 |
+
print(f"Grammar correction error: {e}")
|
| 259 |
+
corrected = transcription
|
| 260 |
+
|
| 261 |
+
# Step 4: Sentiment Analysis
|
| 262 |
+
try:
|
| 263 |
+
sentiment_result = sentiment_pipeline(transcription)[0]
|
| 264 |
+
sentiment = sentiment_result["label"]
|
| 265 |
+
sentiment_score = sentiment_result["score"]
|
| 266 |
+
except Exception as e:
|
| 267 |
+
print(f"Sentiment analysis error: {e}")
|
| 268 |
+
sentiment = "NEUTRAL"
|
| 269 |
+
sentiment_score = 0.5
|
| 270 |
+
|
| 271 |
+
# Step 5: Fluency Analysis
|
| 272 |
+
try:
|
| 273 |
+
fluency_result = fluency_pipeline(transcription)[0]
|
| 274 |
+
fluency_score = fluency_result["score"] if fluency_result["label"] == "acceptable" else 1 - fluency_result["score"]
|
| 275 |
+
except Exception as e:
|
| 276 |
+
print(f"Fluency analysis error: {e}")
|
| 277 |
+
fluency_score = 0.5
|
| 278 |
+
|
| 279 |
+
# Step 6: Filler Words Analysis
|
| 280 |
+
try:
|
| 281 |
+
filler_count, filler_ratio = count_filler_words(transcription)
|
| 282 |
+
except Exception as e:
|
| 283 |
+
print(f"Filler word analysis error: {e}")
|
| 284 |
+
filler_count, filler_ratio = 0, 0
|
| 285 |
+
|
| 286 |
+
# Step 7: Speaking Rate
|
| 287 |
+
try:
|
| 288 |
+
speaking_rate = calculate_speaking_rate(transcription, duration)
|
| 289 |
+
except Exception as e:
|
| 290 |
+
print(f"Speaking rate calculation error: {e}")
|
| 291 |
+
speaking_rate = 0
|
| 292 |
+
|
| 293 |
+
# Step 8: Vocabulary Richness
|
| 294 |
+
try:
|
| 295 |
+
vocab_richness, pos_counts = analyze_vocabulary_richness(transcription)
|
| 296 |
+
except Exception as e:
|
| 297 |
+
print(f"Vocabulary analysis error: {e}")
|
| 298 |
+
vocab_richness, pos_counts = 0.5, {"N/A": 1}
|
| 299 |
+
|
| 300 |
+
# Step 9: Sentence Complexity
|
| 301 |
+
try:
|
| 302 |
+
avg_words, sentence_variation = analyze_sentence_complexity(transcription)
|
| 303 |
+
except Exception as e:
|
| 304 |
+
print(f"Sentence complexity analysis error: {e}")
|
| 305 |
+
avg_words, sentence_variation = 0, 0
|
| 306 |
+
|
| 307 |
+
# Create feedback
|
| 308 |
+
try:
|
| 309 |
+
feedback = create_detailed_feedback(
|
| 310 |
+
transcription, grammar_score, corrected, sentiment,
|
| 311 |
+
fluency_score, filler_ratio, speaking_rate, vocab_richness, avg_words
|
| 312 |
+
)
|
| 313 |
+
except Exception as e:
|
| 314 |
+
print(f"Feedback creation error: {e}")
|
| 315 |
+
feedback = "Error generating detailed feedback."
|
| 316 |
+
|
| 317 |
+
# Create metrics visualization
|
| 318 |
+
try:
|
| 319 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 320 |
+
|
| 321 |
+
# Define metrics for radar chart
|
| 322 |
+
categories = ['Grammar', 'Fluency', 'Vocabulary', 'Speaking Rate', 'Clarity']
|
| 323 |
+
|
| 324 |
+
# Normalize scores between 0 and 1
|
| 325 |
+
grammar_norm = confidence if label == "acceptable" else 1 - confidence
|
| 326 |
+
speaking_rate_norm = max(0, min(1, 1 - abs((speaking_rate - 140) / 100))) # Optimal around 140 wpm
|
| 327 |
+
|
| 328 |
+
values = [
|
| 329 |
+
grammar_norm,
|
| 330 |
+
fluency_score,
|
| 331 |
+
vocab_richness,
|
| 332 |
+
speaking_rate_norm,
|
| 333 |
+
1 - filler_ratio # Lower filler ratio is better
|
| 334 |
+
]
|
| 335 |
+
|
| 336 |
+
# Complete the loop for the radar chart
|
| 337 |
+
values += values[:1]
|
| 338 |
+
categories += categories[:1]
|
| 339 |
+
|
| 340 |
+
# Convert to radians and plot
|
| 341 |
+
angles = np.linspace(0, 2*np.pi, len(categories), endpoint=False).tolist()
|
| 342 |
+
angles += angles[:1]
|
| 343 |
+
|
| 344 |
+
ax.plot(angles, values, linewidth=2, linestyle='solid')
|
| 345 |
+
ax.fill(angles, values, alpha=0.25)
|
| 346 |
+
ax.set_yticklabels([])
|
| 347 |
+
ax.set_xticks(angles[:-1])
|
| 348 |
+
ax.set_xticklabels(categories[:-1])
|
| 349 |
+
ax.grid(True)
|
| 350 |
+
plt.title('Speaking Performance Metrics', size=15, color='navy', y=1.1)
|
| 351 |
+
except Exception as e:
|
| 352 |
+
print(f"Visualization error: {e}")
|
| 353 |
+
# Create a simple error figure
|
| 354 |
+
fig, ax = plt.subplots(figsize=(6, 3))
|
| 355 |
+
ax.text(0.5, 0.5, "Error creating visualization",
|
| 356 |
+
horizontalalignment='center', verticalalignment='center')
|
| 357 |
+
ax.axis('off')
|
| 358 |
+
|
| 359 |
+
# Create detailed analysis text
|
| 360 |
+
processing_time = time.time() - start_time
|
| 361 |
+
try:
|
| 362 |
+
pos_counts_str = ', '.join([f"{k}: {v}" for k, v in sorted(pos_counts.items(), key=lambda x: x[1], reverse=True)[:5]])
|
| 363 |
except:
|
| 364 |
+
pos_counts_str = "N/A"
|
| 365 |
+
|
| 366 |
+
detailed_analysis = f"""
|
| 367 |
+
## Detailed Speech Analysis
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 368 |
|
| 369 |
+
**Processing Time:** {processing_time:.2f} seconds
|
| 370 |
+
**Audio Duration:** {duration:.2f} seconds
|
| 371 |
|
| 372 |
+
### Metrics:
|
| 373 |
+
- **Grammar Score:** {confidence:.2f} ({label})
|
| 374 |
+
- **Fluency Score:** {fluency_score:.2f}
|
| 375 |
+
- **Speaking Rate:** {speaking_rate:.1f} words per minute
|
| 376 |
+
- **Vocabulary Richness:** {vocab_richness:.2f} (higher is better)
|
| 377 |
+
- **Filler Words:** {filler_count} occurrences ({filler_ratio:.1%} of speech)
|
| 378 |
+
- **Avg Words Per Sentence:** {avg_words:.1f}
|
| 379 |
+
- **Sentiment:** {sentiment} ({sentiment_score:.2f})
|
| 380 |
+
|
| 381 |
+
### Word Types Used:
|
| 382 |
+
{pos_counts_str}
|
| 383 |
+
"""
|
| 384 |
+
|
| 385 |
+
return transcription, grammar_score, corrected, feedback, fig, detailed_analysis
|
| 386 |
+
|
| 387 |
+
except Exception as e:
|
| 388 |
+
print(f"Unexpected error in process_audio: {e}")
|
| 389 |
+
return ("An unexpected error occurred during processing.",
|
| 390 |
+
"Error", "Error", "There was an unexpected error processing your audio.",
|
| 391 |
+
None, f"## Unexpected Error\n\nAn error occurred: {str(e)[:200]}...")
|
| 392 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 393 |
|
| 394 |
# Create theme
|
| 395 |
theme = gr.themes.Soft(
|