File size: 45,152 Bytes
1a2c9f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
"""
Cursor Rules Generator - Hugging Face Spaces App

This module implements the Gradio interface for Hugging Face Spaces deployment.
All code is self-contained in this file to avoid import issues.
"""

import os
import gradio as gr
import json
import requests
import traceback
from dotenv import load_dotenv
from abc import ABC, abstractmethod
from typing import Dict, List, Optional, Any

# Load environment variables
load_dotenv()

# Configuration settings
class Settings:
    """Application settings."""
    
    # Application settings
    APP_NAME = "Cursor Rules Generator"
    DEBUG = os.getenv("DEBUG", "False").lower() == "true"
    
    # API keys
    GEMINI_API_KEY = os.getenv("GEMINI_API_KEY", "")
    OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
    OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY", "")
    
    # Default settings
    DEFAULT_PROVIDER = os.getenv("DEFAULT_PROVIDER", "gemini")
    DEFAULT_RULE_TYPE = os.getenv("DEFAULT_RULE_TYPE", "Always")
    
    # LLM provider settings
    GEMINI_API_URL = "https://generativelanguage.googleapis.com/v1beta"
    OPENAI_API_URL = "https://api.openai.com/v1"
    OPENROUTER_API_URL = "https://openrouter.ai/api/v1"
    
    # LLM model settings
    DEFAULT_GEMINI_MODEL = os.getenv("DEFAULT_GEMINI_MODEL", "gemini-2.0-flash")
    DEFAULT_OPENAI_MODEL = os.getenv("DEFAULT_OPENAI_MODEL", "gpt-4o")
    DEFAULT_OPENROUTER_MODEL = os.getenv("DEFAULT_OPENROUTER_MODEL", "openai/gpt-4o")
    
    # Rule generation settings
    MAX_RULE_LENGTH = int(os.getenv("MAX_RULE_LENGTH", "10000"))
    DEFAULT_TEMPERATURE = float(os.getenv("DEFAULT_TEMPERATURE", "0.7"))

# LLM Adapter Interface
class LLMAdapter(ABC):
    """Base adapter interface for LLM providers."""
    
    @abstractmethod
    def initialize(self, api_key: str, **kwargs) -> None:
        """Initialize the adapter with API key and optional parameters."""
        pass
    
    @abstractmethod
    def validate_api_key(self, api_key: str) -> bool:
        """Validate the API key."""
        pass
    
    @abstractmethod
    def get_available_models(self) -> List[Dict[str, str]]:
        """Get a list of available models from the provider."""
        pass
    
    @abstractmethod
    def generate_rule(
        self, 
        model: str,
        rule_type: str, 
        description: str, 
        content: str, 
        parameters: Optional[Dict[str, Any]] = None
    ) -> str:
        """Generate a Cursor Rule using the LLM provider."""
        pass

# Gemini Adapter
class GeminiAdapter(LLMAdapter):
    """Adapter for Google's Gemini API."""
    
    def __init__(self):
        """Initialize the Gemini adapter."""
        self.api_key = None
        self.api_url = Settings.GEMINI_API_URL
        self.initialized = False
        self.last_error = None
    
    def initialize(self, api_key: str, **kwargs) -> None:
        """Initialize the adapter with API key and optional parameters."""
        self.api_key = api_key
        self.api_url = kwargs.get('api_url', Settings.GEMINI_API_URL)
        self.initialized = True
    
    def validate_api_key(self, api_key: str) -> bool:
        """Validate the Gemini API key."""
        try:
            # Try to list models with the provided API key
            url = f"{self.api_url}/models?key={api_key}"
            response = requests.get(url)
            
            # Check if the request was successful
            if response.status_code == 200:
                return True
            
            # Store error details for debugging
            self.last_error = f"API Error: Status {response.status_code}, Response: {response.text}"
            print(f"Gemini API validation failed: {self.last_error}")
            return False
        except Exception as e:
            # Store exception details for debugging
            self.last_error = f"Exception: {str(e)}\n{traceback.format_exc()}"
            print(f"Gemini API validation exception: {self.last_error}")
            return False
    
    def get_available_models(self) -> List[Dict[str, str]]:
        """Get a list of available Gemini models."""
        if not self.initialized:
            raise ValueError("Adapter not initialized. Call initialize() first.")
        
        try:
            # Get available models
            url = f"{self.api_url}/models?key={self.api_key}"
            response = requests.get(url)
            
            if response.status_code != 200:
                print(f"Failed to get models: Status {response.status_code}, Response: {response.text}")
                raise ValueError(f"Failed to get models: {response.text}")
            
            data = response.json()
            
            # Filter for Gemini models and format the response
            models = []
            for model in data.get('models', []):
                if 'gemini' in model.get('name', '').lower():
                    model_id = model.get('name').split('/')[-1]
                    models.append({
                        'id': model_id,
                        'name': self._format_model_name(model_id)
                    })
            
            # If no models found, return default models
            if not models:
                models = [
                    {'id': 'gemini-2.5-pro', 'name': 'Gemini 2.5 Pro'},
                    {'id': 'gemini-2.0-flash', 'name': 'Gemini 2.0 Flash'},
                    {'id': 'gemini-2.0-flash-lite', 'name': 'Gemini 2.0 Flash-Lite'}
                ]
            
            return models
        except Exception as e:
            print(f"Exception in get_available_models: {str(e)}\n{traceback.format_exc()}")
            # Return default models on error
            return [
                {'id': 'gemini-2.5-pro', 'name': 'Gemini 2.5 Pro'},
                {'id': 'gemini-2.0-flash', 'name': 'Gemini 2.0 Flash'},
                {'id': 'gemini-2.0-flash-lite', 'name': 'Gemini 2.0 Flash-Lite'}
            ]
    
    def generate_rule(
        self, 
        model: str,
        rule_type: str, 
        description: str, 
        content: str, 
        parameters: Optional[Dict[str, Any]] = None
    ) -> str:
        """Generate a Cursor Rule using Gemini."""
        if not self.initialized:
            raise ValueError("Adapter not initialized. Call initialize() first.")
        
        # Set default parameters if not provided
        if parameters is None:
            parameters = {}
        
        # Extract parameters
        temperature = parameters.get('temperature', Settings.DEFAULT_TEMPERATURE)
        globs = parameters.get('globs', '')
        referenced_files = parameters.get('referenced_files', '')
        prompt = parameters.get('prompt', '')
        
        # Prepare the prompt for Gemini
        system_prompt = """
        You are a Cursor Rules expert. Create a rule in MDC format based on the provided information.
        
        MDC format example:
        ---
        description: RPC Service boilerplate
        globs: 
        alwaysApply: false
        ---
        
        - Use our internal RPC pattern when defining services
        - Always use snake_case for service names.
        
        @service-template.ts
        """
        
        user_prompt = f"""
        Create a Cursor Rule with the following details:
        
        Rule Type: {rule_type}
        Description: {description}
        Content: {content}
        """
        
        if globs:
            user_prompt += f"\nGlobs: {globs}"
        
        if referenced_files:
            user_prompt += f"\nReferenced Files: {referenced_files}"
        
        if prompt:
            user_prompt += f"\nAdditional Instructions: {prompt}"
        
        # Prepare the API request
        url = f"{self.api_url}/models/{model}:generateContent?key={self.api_key}"
        
        payload = {
            "contents": [
                {
                    "role": "user",
                    "parts": [
                        {"text": system_prompt + "\n\n" + user_prompt}
                    ]
                }
            ],
            "generationConfig": {
                "temperature": temperature,
                "topP": 0.8,
                "topK": 40,
                "maxOutputTokens": 2048
            }
        }
        
        # Make the API request
        try:
            response = requests.post(url, json=payload)
            
            if response.status_code != 200:
                print(f"Failed to generate rule: Status {response.status_code}, Response: {response.text}")
                raise ValueError(f"Failed to generate rule: {response.text}")
            
            data = response.json()
            
            # Extract the generated text
            generated_text = data.get('candidates', [{}])[0].get('content', {}).get('parts', [{}])[0].get('text', '')
            
            # If no text was generated, create a basic rule
            if not generated_text:
                return self._create_basic_rule(rule_type, description, content, globs, referenced_files)
            
            return generated_text
        except Exception as e:
            print(f"Exception in generate_rule: {str(e)}\n{traceback.format_exc()}")
            # Create a basic rule on error
            return self._create_basic_rule(rule_type, description, content, globs, referenced_files)
    
    def _format_model_name(self, model_id: str) -> str:
        """Format a model ID into a human-readable name."""
        # Replace hyphens with spaces and capitalize each word
        name = model_id.replace('-', ' ').title()
        
        # Special case handling
        name = name.replace('Gemini ', 'Gemini ')
        name = name.replace('Pro ', 'Pro ')
        name = name.replace('Flash ', 'Flash ')
        name = name.replace('Lite', 'Lite')
        
        return name
    
    def _create_basic_rule(
        self,
        rule_type: str,
        description: str,
        content: str,
        globs: str = '',
        referenced_files: str = ''
    ) -> str:
        """Create a basic rule in MDC format without using the LLM."""
        # Create MDC format
        mdc = '---\n'
        mdc += f'description: {description}\n'
        
        if rule_type == 'Auto Attached' and globs:
            mdc += f'globs: {globs}\n'
        
        if rule_type == 'Always':
            mdc += 'alwaysApply: true\n'
        else:
            mdc += 'alwaysApply: false\n'
        
        mdc += '---\n\n'
        mdc += content + '\n'
        
        # Add referenced files
        if referenced_files:
            mdc += '\n' + referenced_files
        
        return mdc

# OpenAI Adapter
class OpenAIAdapter(LLMAdapter):
    """Adapter for OpenAI API."""
    
    def __init__(self):
        """Initialize the OpenAI adapter."""
        self.api_key = None
        self.api_url = Settings.OPENAI_API_URL
        self.initialized = False
        self.last_error = None
    
    def initialize(self, api_key: str, **kwargs) -> None:
        """Initialize the adapter with API key and optional parameters."""
        self.api_key = api_key
        self.api_url = kwargs.get('api_url', Settings.OPENAI_API_URL)
        self.initialized = True
    
    def validate_api_key(self, api_key: str) -> bool:
        """Validate the OpenAI API key."""
        try:
            # Try to list models with the provided API key
            url = f"{self.api_url}/models"
            headers = {
                "Authorization": f"Bearer {api_key}"
            }
            response = requests.get(url, headers=headers)
            
            # Check if the request was successful
            if response.status_code == 200:
                return True
            
            # Store error details for debugging
            self.last_error = f"API Error: Status {response.status_code}, Response: {response.text}"
            print(f"OpenAI API validation failed: {self.last_error}")
            return False
        except Exception as e:
            # Store exception details for debugging
            self.last_error = f"Exception: {str(e)}\n{traceback.format_exc()}"
            print(f"OpenAI API validation exception: {self.last_error}")
            return False
    
    def get_available_models(self) -> List[Dict[str, str]]:
        """Get a list of available OpenAI models."""
        if not self.initialized:
            raise ValueError("Adapter not initialized. Call initialize() first.")
        
        try:
            # Get available models
            url = f"{self.api_url}/models"
            headers = {
                "Authorization": f"Bearer {self.api_key}"
            }
            response = requests.get(url, headers=headers)
            
            if response.status_code != 200:
                print(f"Failed to get models: Status {response.status_code}, Response: {response.text}")
                raise ValueError(f"Failed to get models: {response.text}")
            
            data = response.json()
            
            # Filter for chat models and format the response
            models = []
            for model in data.get('data', []):
                model_id = model.get('id')
                if any(prefix in model_id for prefix in ['gpt-4', 'gpt-3.5']):
                    models.append({
                        'id': model_id,
                        'name': self._format_model_name(model_id)
                    })
            
            # If no models found, return default models
            if not models:
                models = [
                    {'id': 'gpt-4o', 'name': 'GPT-4o'},
                    {'id': 'gpt-4-turbo', 'name': 'GPT-4 Turbo'},
                    {'id': 'gpt-3.5-turbo', 'name': 'GPT-3.5 Turbo'}
                ]
            
            return models
        except Exception as e:
            print(f"Exception in get_available_models: {str(e)}\n{traceback.format_exc()}")
            # Return default models on error
            return [
                {'id': 'gpt-4o', 'name': 'GPT-4o'},
                {'id': 'gpt-4-turbo', 'name': 'GPT-4 Turbo'},
                {'id': 'gpt-3.5-turbo', 'name': 'GPT-3.5 Turbo'}
            ]
    
    def generate_rule(
        self, 
        model: str,
        rule_type: str, 
        description: str, 
        content: str, 
        parameters: Optional[Dict[str, Any]] = None
    ) -> str:
        """Generate a Cursor Rule using OpenAI."""
        if not self.initialized:
            raise ValueError("Adapter not initialized. Call initialize() first.")
        
        # Set default parameters if not provided
        if parameters is None:
            parameters = {}
        
        # Extract parameters
        temperature = parameters.get('temperature', Settings.DEFAULT_TEMPERATURE)
        globs = parameters.get('globs', '')
        referenced_files = parameters.get('referenced_files', '')
        prompt = parameters.get('prompt', '')
        
        # Prepare the prompt for OpenAI
        system_prompt = """
        You are a Cursor Rules expert. Create a rule in MDC format based on the provided information.
        
        MDC format example:
        ---
        description: RPC Service boilerplate
        globs: 
        alwaysApply: false
        ---
        
        - Use our internal RPC pattern when defining services
        - Always use snake_case for service names.
        
        @service-template.ts
        """
        
        user_prompt = f"""
        Create a Cursor Rule with the following details:
        
        Rule Type: {rule_type}
        Description: {description}
        Content: {content}
        """
        
        if globs:
            user_prompt += f"\nGlobs: {globs}"
        
        if referenced_files:
            user_prompt += f"\nReferenced Files: {referenced_files}"
        
        if prompt:
            user_prompt += f"\nAdditional Instructions: {prompt}"
        
        # Prepare the API request
        url = f"{self.api_url}/chat/completions"
        headers = {
            "Authorization": f"Bearer {self.api_key}",
            "Content-Type": "application/json"
        }
        
        payload = {
            "model": model,
            "messages": [
                {
                    "role": "system",
                    "content": system_prompt
                },
                {
                    "role": "user",
                    "content": user_prompt
                }
            ],
            "temperature": temperature,
            "max_tokens": 2048
        }
        
        # Make the API request
        try:
            response = requests.post(url, headers=headers, json=payload)
            
            if response.status_code != 200:
                print(f"Failed to generate rule: Status {response.status_code}, Response: {response.text}")
                raise ValueError(f"Failed to generate rule: {response.text}")
            
            data = response.json()
            
            # Extract the generated text
            generated_text = data.get('choices', [{}])[0].get('message', {}).get('content', '')
            
            # If no text was generated, create a basic rule
            if not generated_text:
                return self._create_basic_rule(rule_type, description, content, globs, referenced_files)
            
            return generated_text
        except Exception as e:
            print(f"Exception in generate_rule: {str(e)}\n{traceback.format_exc()}")
            # Create a basic rule on error
            return self._create_basic_rule(rule_type, description, content, globs, referenced_files)
    
    def _format_model_name(self, model_id: str) -> str:
        """Format a model ID into a human-readable name."""
        # Replace hyphens with spaces and capitalize each word
        name = model_id.replace('-', ' ').title()
        
        # Special case handling
        name = name.replace('Gpt ', 'GPT ')
        name = name.replace('Gpt4', 'GPT-4')
        name = name.replace('Gpt3', 'GPT-3')
        name = name.replace('Gpt 4', 'GPT-4')
        name = name.replace('Gpt 3', 'GPT-3')
        name = name.replace('Turbo', 'Turbo')
        name = name.replace('O', 'o')
        
        return name
    
    def _create_basic_rule(
        self,
        rule_type: str,
        description: str,
        content: str,
        globs: str = '',
        referenced_files: str = ''
    ) -> str:
        """Create a basic rule in MDC format without using the LLM."""
        # Create MDC format
        mdc = '---\n'
        mdc += f'description: {description}\n'
        
        if rule_type == 'Auto Attached' and globs:
            mdc += f'globs: {globs}\n'
        
        if rule_type == 'Always':
            mdc += 'alwaysApply: true\n'
        else:
            mdc += 'alwaysApply: false\n'
        
        mdc += '---\n\n'
        mdc += content + '\n'
        
        # Add referenced files
        if referenced_files:
            mdc += '\n' + referenced_files
        
        return mdc

# OpenRouter Adapter
class OpenRouterAdapter(LLMAdapter):
    """Adapter for OpenRouter API."""
    
    def __init__(self):
        """Initialize the OpenRouter adapter."""
        self.api_key = None
        self.api_url = Settings.OPENROUTER_API_URL
        self.initialized = False
        self.last_error = None
    
    def initialize(self, api_key: str, **kwargs) -> None:
        """Initialize the adapter with API key and optional parameters."""
        self.api_key = api_key
        self.api_url = kwargs.get('api_url', Settings.OPENROUTER_API_URL)
        self.site_url = kwargs.get('site_url', 'https://cursor-rules-generator.example.com')
        self.site_name = kwargs.get('site_name', 'Cursor Rules Generator')
        self.initialized = True
    
    def validate_api_key(self, api_key: str) -> bool:
        """Validate the OpenRouter API key."""
        try:
            # Try to list models with the provided API key
            url = f"{self.api_url}/models"
            headers = {
                "Authorization": f"Bearer {api_key}"
            }
            response = requests.get(url, headers=headers)
            
            # Check if the request was successful
            if response.status_code == 200:
                return True
            
            # Store error details for debugging
            self.last_error = f"API Error: Status {response.status_code}, Response: {response.text}"
            print(f"OpenRouter API validation failed: {self.last_error}")
            return False
        except Exception as e:
            # Store exception details for debugging
            self.last_error = f"Exception: {str(e)}\n{traceback.format_exc()}"
            print(f"OpenRouter API validation exception: {self.last_error}")
            return False
    
    def get_available_models(self) -> List[Dict[str, str]]:
        """Get a list of available OpenRouter models."""
        if not self.initialized:
            raise ValueError("Adapter not initialized. Call initialize() first.")
        
        try:
            # Get available models
            url = f"{self.api_url}/models"
            headers = {
                "Authorization": f"Bearer {self.api_key}"
            }
            response = requests.get(url, headers=headers)
            
            if response.status_code != 200:
                print(f"Failed to get models: Status {response.status_code}, Response: {response.text}")
                raise ValueError(f"Failed to get models: {response.text}")
            
            data = response.json()
            
            # Format the response
            models = []
            for model in data.get('data', []):
                model_id = model.get('id')
                model_name = model.get('name', model_id)
                
                # Skip non-chat models
                if not model.get('capabilities', {}).get('chat'):
                    continue
                
                models.append({
                    'id': model_id,
                    'name': model_name
                })
            
            # If no models found, return default models
            if not models:
                models = [
                    {'id': 'openai/gpt-4o', 'name': 'OpenAI GPT-4o'},
                    {'id': 'anthropic/claude-3-opus', 'name': 'Anthropic Claude 3 Opus'},
                    {'id': 'google/gemini-2.5-pro', 'name': 'Google Gemini 2.5 Pro'},
                    {'id': 'meta-llama/llama-3-70b-instruct', 'name': 'Meta Llama 3 70B'}
                ]
            
            return models
        except Exception as e:
            print(f"Exception in get_available_models: {str(e)}\n{traceback.format_exc()}")
            # Return default models on error
            return [
                {'id': 'openai/gpt-4o', 'name': 'OpenAI GPT-4o'},
                {'id': 'anthropic/claude-3-opus', 'name': 'Anthropic Claude 3 Opus'},
                {'id': 'google/gemini-2.5-pro', 'name': 'Google Gemini 2.5 Pro'},
                {'id': 'meta-llama/llama-3-70b-instruct', 'name': 'Meta Llama 3 70B'}
            ]
    
    def generate_rule(
        self, 
        model: str,
        rule_type: str, 
        description: str, 
        content: str, 
        parameters: Optional[Dict[str, Any]] = None
    ) -> str:
        """Generate a Cursor Rule using OpenRouter."""
        if not self.initialized:
            raise ValueError("Adapter not initialized. Call initialize() first.")
        
        # Set default parameters if not provided
        if parameters is None:
            parameters = {}
        
        # Extract parameters
        temperature = parameters.get('temperature', Settings.DEFAULT_TEMPERATURE)
        globs = parameters.get('globs', '')
        referenced_files = parameters.get('referenced_files', '')
        prompt = parameters.get('prompt', '')
        
        # Prepare the prompt for OpenRouter
        system_prompt = """
        You are a Cursor Rules expert. Create a rule in MDC format based on the provided information.
        
        MDC format example:
        ---
        description: RPC Service boilerplate
        globs: 
        alwaysApply: false
        ---
        
        - Use our internal RPC pattern when defining services
        - Always use snake_case for service names.
        
        @service-template.ts
        """
        
        user_prompt = f"""
        Create a Cursor Rule with the following details:
        
        Rule Type: {rule_type}
        Description: {description}
        Content: {content}
        """
        
        if globs:
            user_prompt += f"\nGlobs: {globs}"
        
        if referenced_files:
            user_prompt += f"\nReferenced Files: {referenced_files}"
        
        if prompt:
            user_prompt += f"\nAdditional Instructions: {prompt}"
        
        # Prepare the API request
        url = f"{self.api_url}/chat/completions"
        headers = {
            "Authorization": f"Bearer {self.api_key}",
            "Content-Type": "application/json",
            "HTTP-Referer": self.site_url,
            "X-Title": self.site_name
        }
        
        payload = {
            "model": model,
            "messages": [
                {
                    "role": "system",
                    "content": system_prompt
                },
                {
                    "role": "user",
                    "content": user_prompt
                }
            ],
            "temperature": temperature,
            "max_tokens": 2048
        }
        
        # Make the API request
        try:
            response = requests.post(url, headers=headers, json=payload)
            
            if response.status_code != 200:
                print(f"Failed to generate rule: Status {response.status_code}, Response: {response.text}")
                raise ValueError(f"Failed to generate rule: {response.text}")
            
            data = response.json()
            
            # Extract the generated text
            generated_text = data.get('choices', [{}])[0].get('message', {}).get('content', '')
            
            # If no text was generated, create a basic rule
            if not generated_text:
                return self._create_basic_rule(rule_type, description, content, globs, referenced_files)
            
            return generated_text
        except Exception as e:
            print(f"Exception in generate_rule: {str(e)}\n{traceback.format_exc()}")
            # Create a basic rule on error
            return self._create_basic_rule(rule_type, description, content, globs, referenced_files)
    
    def _create_basic_rule(
        self,
        rule_type: str,
        description: str,
        content: str,
        globs: str = '',
        referenced_files: str = ''
    ) -> str:
        """Create a basic rule in MDC format without using the LLM."""
        # Create MDC format
        mdc = '---\n'
        mdc += f'description: {description}\n'
        
        if rule_type == 'Auto Attached' and globs:
            mdc += f'globs: {globs}\n'
        
        if rule_type == 'Always':
            mdc += 'alwaysApply: true\n'
        else:
            mdc += 'alwaysApply: false\n'
        
        mdc += '---\n\n'
        mdc += content + '\n'
        
        # Add referenced files
        if referenced_files:
            mdc += '\n' + referenced_files
        
        return mdc

# LLM Adapter Factory
class LLMAdapterFactory:
    """Factory for creating LLM adapters."""
    
    @staticmethod
    def create_adapter(provider_name: str) -> LLMAdapter:
        """Create an adapter for the specified provider."""
        provider_name = provider_name.lower()
        
        if provider_name == "gemini":
            return GeminiAdapter()
        elif provider_name == "openai":
            return OpenAIAdapter()
        elif provider_name == "openrouter":
            return OpenRouterAdapter()
        else:
            raise ValueError(f"Unsupported provider: {provider_name}")
    
    @staticmethod
    def get_supported_providers() -> Dict[str, str]:
        """Get a dictionary of supported providers."""
        return {
            "gemini": "Google Gemini",
            "openai": "OpenAI",
            "openrouter": "OpenRouter"
        }

# Rule Generator
class RuleGenerator:
    """Engine for generating Cursor Rules."""
    
    def __init__(self):
        """Initialize the rule generator."""
        self.factory = LLMAdapterFactory()
    
    def create_rule(
        self,
        provider: str,
        model: str,
        rule_type: str,
        description: str,
        content: str,
        api_key: str,
        parameters: Optional[Dict[str, Any]] = None
    ) -> str:
        """Create a Cursor Rule using the specified LLM provider."""
        # Set default parameters if not provided
        if parameters is None:
            parameters = {}
        
        try:
            # Create and initialize the adapter
            adapter = self.factory.create_adapter(provider)
            adapter.initialize(api_key)
            
            # Generate the rule using the adapter
            rule = adapter.generate_rule(model, rule_type, description, content, parameters)
            
            return rule
        except Exception as e:
            print(f"Exception in create_rule: {str(e)}\n{traceback.format_exc()}")
            # If LLM generation fails, create a basic rule
            return self._create_basic_rule(rule_type, description, content, parameters)
    
    def _create_basic_rule(
        self,
        rule_type: str,
        description: str,
        content: str,
        parameters: Optional[Dict[str, Any]] = None
    ) -> str:
        """Create a basic rule in MDC format without using an LLM."""
        # Set default parameters if not provided
        if parameters is None:
            parameters = {}
        
        # Extract parameters
        globs = parameters.get('globs', '')
        referenced_files = parameters.get('referenced_files', '')
        
        # Create MDC format
        mdc = '---\n'
        mdc += f'description: {description}\n'
        
        if rule_type == 'Auto Attached' and globs:
            mdc += f'globs: {globs}\n'
        
        if rule_type == 'Always':
            mdc += 'alwaysApply: true\n'
        else:
            mdc += 'alwaysApply: false\n'
        
        mdc += '---\n\n'
        mdc += content + '\n'
        
        # Add referenced files
        if referenced_files:
            mdc += '\n' + referenced_files
        
        return mdc
    
    def validate_rule_type(self, rule_type: str) -> bool:
        """Validate if the rule type is supported."""
        valid_types = ['Always', 'Auto Attached', 'Agent Requested', 'Manual']
        return rule_type in valid_types
    
    def get_rule_types(self) -> List[Dict[str, str]]:
        """Get a list of supported rule types."""
        return [
            {
                'id': 'Always',
                'name': 'Always',
                'description': 'Always included in the model context'
            },
            {
                'id': 'Auto Attached',
                'name': 'Auto Attached',
                'description': 'Included when files matching glob patterns are referenced'
            },
            {
                'id': 'Agent Requested',
                'name': 'Agent Requested',
                'description': 'Rule is presented to the AI, which decides whether to include it'
            },
            {
                'id': 'Manual',
                'name': 'Manual',
                'description': 'Only included when explicitly referenced using @ruleName'
            }
        ]

# Initialize components
rule_generator = RuleGenerator()
factory = LLMAdapterFactory()

# Get supported providers
providers = factory.get_supported_providers()
provider_choices = list(providers.keys())

# Get rule types
rule_types = rule_generator.get_rule_types()
rule_type_choices = [rt['id'] for rt in rule_types]

def validate_api_key(provider, api_key):
    """Validate an API key for a specific provider.
    
    Args:
        provider: The LLM provider
        api_key: The API key to validate
        
    Returns:
        tuple: (success, message, model_names, model_ids)
    """
    if not provider or not api_key:
        return False, "Lütfen bir sağlayıcı seçin ve API anahtarı girin.", [], []
    
    try:
        # Create the adapter
        adapter = factory.create_adapter(provider)
        
        # Print debug info
        print(f"Validating {provider} API key: {api_key[:5]}...{api_key[-5:] if len(api_key) > 10 else ''}")
        
        # Validate the API key
        valid = adapter.validate_api_key(api_key)
        
        if valid:
            # Initialize the adapter
            adapter.initialize(api_key)
            
            # Get available models
            models = adapter.get_available_models()
            model_names = [model['name'] for model in models]
            model_ids = [model['id'] for model in models]
            
            print(f"Models found: {model_names}")
            print(f"Model IDs: {model_ids}")
            
            # Use default models if none are returned
            if not model_names or not model_ids:
                if provider == "gemini":
                    model_names = ["Gemini 2.5 Pro", "Gemini 2.0 Flash", "Gemini 2.0 Flash-Lite"]
                    model_ids = ["gemini-2.5-pro", "gemini-2.0-flash", "gemini-2.0-flash-lite"]
                elif provider == "openai":
                    model_names = ["GPT-4o", "GPT-4 Turbo", "GPT-3.5 Turbo"]
                    model_ids = ["gpt-4o", "gpt-4-turbo", "gpt-3.5-turbo"]
                elif provider == "openrouter":
                    model_names = ["OpenAI GPT-4o", "Anthropic Claude 3 Opus", "Google Gemini 2.5 Pro"]
                    model_ids = ["openai/gpt-4o", "anthropic/claude-3-opus", "google/gemini-2.5-pro"]
                
                print(f"Using default models: {model_names}")
            
            return True, "API anahtarı doğrulandı.", model_names, model_ids
        else:
            error_msg = getattr(adapter, 'last_error', 'Bilinmeyen hata')
            return False, f"Geçersiz API anahtarı. Hata: {error_msg}", [], []
    except Exception as e:
        error_details = traceback.format_exc()
        print(f"Exception in validate_api_key: {str(e)}\n{error_details}")
        return False, f"Hata: {str(e)}", [], []

def generate_rule(provider, api_key, model_index, model_ids, rule_type, description, content, globs, referenced_files, prompt, temperature):
    """Generate a Cursor Rule.
    
    Args:
        provider: The LLM provider
        api_key: The API key for the provider
        model_index: The index of the selected model
        model_ids: The list of model IDs
        rule_type: The type of rule to generate
        description: A short description of the rule's purpose
        content: The main content of the rule
        globs: Glob patterns for Auto Attached rules
        referenced_files: Referenced files
        prompt: Additional instructions for the LLM
        temperature: Temperature parameter for generation
        
    Returns:
        tuple: (success, message, rule)
    """
    print(f"Generate rule called with model_index: {model_index}, model_ids: {model_ids}")
    
    if not provider or not api_key:
        return False, "Lütfen bir sağlayıcı seçin ve API anahtarı girin.", ""
    
    if model_index is None or model_index == "":
        return False, "Lütfen bir model seçin. Model seçimi yapılamıyorsa, API anahtarını tekrar doğrulayın.", ""
    
    if not rule_type or not description or not content:
        return False, "Lütfen kural tipi, açıklama ve içerik alanlarını doldurun.", ""
    
    # Convert model_index to integer if it's a string
    try:
        if isinstance(model_index, str) and model_index.isdigit():
            model_index = int(model_index)
    except:
        pass
    
    # Get the model ID
    if not model_ids:
        return False, "Model listesi bulunamadı. Lütfen API anahtarını tekrar doğrulayın.", ""
    
    try:
        model_index = int(model_index)
    except:
        return False, f"Geçersiz model indeksi: {model_index}", ""
    
    if model_index < 0 or model_index >= len(model_ids):
        return False, f"Geçersiz model seçimi. İndeks: {model_index}, Mevcut modeller: {len(model_ids)}", ""
    
    model = model_ids[model_index]
    
    # Validate rule type
    if not rule_generator.validate_rule_type(rule_type):
        return False, f"Geçersiz kural tipi: {rule_type}", ""
    
    # Validate globs for Auto Attached rule type
    if rule_type == 'Auto Attached' and not globs:
        return False, "Auto Attached kural tipi için glob desenleri gereklidir.", ""
    
    try:
        # Prepare parameters
        parameters = {
            'globs': globs,
            'referenced_files': referenced_files,
            'prompt': prompt,
            'temperature': float(temperature) if temperature else 0.7
        }
        
        # Generate the rule
        rule = rule_generator.create_rule(
            provider=provider,
            model=model,
            rule_type=rule_type,
            description=description,
            content=content,
            api_key=api_key,
            parameters=parameters
        )
        
        return True, "Kural başarıyla oluşturuldu.", rule
    except Exception as e:
        error_details = traceback.format_exc()
        print(f"Exception in generate_rule: {str(e)}\n{error_details}")
        return False, f"Kural oluşturulurken bir hata oluştu: {str(e)}", ""

def update_rule_type_info(rule_type):
    """Update the rule type information.
    
    Args:
        rule_type: The selected rule type
        
    Returns:
        str: Information about the selected rule type
    """
    if rule_type == 'Always':
        return "Her zaman model bağlamına dahil edilir."
    elif rule_type == 'Auto Attached':
        return "Glob desenine uyan dosyalar referans alındığında dahil edilir."
    elif rule_type == 'Agent Requested':
        return "Kural AI'ya sunulur, dahil edilip edilmeyeceğine AI karar verir."
    elif rule_type == 'Manual':
        return "Yalnızca @ruleName kullanılarak açıkça belirtildiğinde dahil edilir."
    else:
        return ""

def update_globs_visibility(rule_type):
    """Update the visibility of the globs input.
    
    Args:
        rule_type: The selected rule type
        
    Returns:
        bool: Whether the globs input should be visible
    """
    return rule_type == 'Auto Attached'

# Create Gradio interface
with gr.Blocks(title="Cursor Rules Oluşturucu") as demo:
    gr.Markdown("# Cursor Rules Oluşturucu")
    gr.Markdown("Gemini, OpenRouter, OpenAI API ve tüm modellerini destekleyen dinamik bir Cursor Rules oluşturucu.")
    
    with gr.Row():
        with gr.Column():
            provider = gr.Dropdown(
                choices=provider_choices,
                label="LLM Sağlayıcı",
                value=provider_choices[0] if provider_choices else None
            )
            
            api_key = gr.Textbox(
                label="API Anahtarı",
                placeholder="API anahtarınızı girin",
                type="password"
            )
            
            validate_btn = gr.Button("API Anahtarını Doğrula")
            
            api_status = gr.Textbox(
                label="API Durumu",
                interactive=False
            )
            
            # Default model choices for each provider
            default_models = {
                "gemini": ["Gemini 2.5 Pro", "Gemini 2.0 Flash", "Gemini 2.0 Flash-Lite"],
                "openai": ["GPT-4o", "GPT-4 Turbo", "GPT-3.5 Turbo"],
                "openrouter": ["OpenAI GPT-4o", "Anthropic Claude 3 Opus", "Google Gemini 2.5 Pro"]
            }
            
            model_dropdown = gr.Dropdown(
                label="Model",
                choices=default_models.get(provider_choices[0] if provider_choices else "gemini", []),
                interactive=True
            )
            
            # Hidden field to store model IDs
            model_ids = gr.State([])
            
            rule_type = gr.Dropdown(
                choices=rule_type_choices,
                label="Kural Tipi",
                value=rule_type_choices[0] if rule_type_choices else None
            )
            
            rule_type_info = gr.Textbox(
                label="Kural Tipi Bilgisi",
                interactive=False,
                value=update_rule_type_info(rule_type_choices[0] if rule_type_choices else "")
            )
            
            description = gr.Textbox(
                label="Açıklama",
                placeholder="Kuralın amacını açıklayan kısa bir açıklama"
            )
            
            globs = gr.Textbox(
                label="Glob Desenleri (Auto Attached için)",
                placeholder="Örn: *.ts, src/*.js",
                visible=False
            )
            
            content = gr.Textbox(
                label="Kural İçeriği",
                placeholder="Kuralın ana içeriği",
                lines=10
            )
            
            referenced_files = gr.Textbox(
                label="Referans Dosyaları (İsteğe bağlı)",
                placeholder="Her satıra bir dosya adı girin, örn: @service-template.ts",
                lines=3
            )
            
            prompt = gr.Textbox(
                label="AI Prompt (İsteğe bağlı)",
                placeholder="AI'ya özel talimatlar verin",
                lines=3
            )
            
            temperature = gr.Slider(
                label="Sıcaklık",
                minimum=0.0,
                maximum=1.0,
                value=0.7,
                step=0.1
            )
            
            generate_btn = gr.Button("Kural Oluştur")
        
        with gr.Column():
            generation_status = gr.Textbox(
                label="Durum",
                interactive=False
            )
            
            rule_output = gr.Textbox(
                label="Oluşturulan Kural",
                lines=20,
                interactive=False
            )
            
            download_btn = gr.Button("İndir")
    
    # Provider change handler to update default models
    def update_default_models(provider_value):
        if provider_value == "gemini":
            return gr.Dropdown.update(choices=default_models["gemini"], value=default_models["gemini"][0] if default_models["gemini"] else None)
        elif provider_value == "openai":
            return gr.Dropdown.update(choices=default_models["openai"], value=default_models["openai"][0] if default_models["openai"] else None)
        elif provider_value == "openrouter":
            return gr.Dropdown.update(choices=default_models["openrouter"], value=default_models["openrouter"][0] if default_models["openrouter"] else None)
        else:
            return gr.Dropdown.update(choices=[], value=None)
    
    provider.change(
        fn=update_default_models,
        inputs=[provider],
        outputs=[model_dropdown]
    )
    
    # API key validation
    validate_btn.click(
        fn=validate_api_key,
        inputs=[provider, api_key],
        outputs=[api_status, model_dropdown, model_ids]
    )
    
    # Rule type change
    rule_type.change(
        fn=update_rule_type_info,
        inputs=[rule_type],
        outputs=[rule_type_info]
    )
    
    rule_type.change(
        fn=update_globs_visibility,
        inputs=[rule_type],
        outputs=[globs]
    )
    
    # Generate rule
    generate_btn.click(
        fn=generate_rule,
        inputs=[
            provider, 
            api_key, 
            model_dropdown, 
            model_ids, 
            rule_type, 
            description, 
            content, 
            globs, 
            referenced_files, 
            prompt, 
            temperature
        ],
        outputs=[generation_status, rule_output]
    )
    
    # Download rule
    def download_rule(rule, description):
        if not rule:
            return None
        
        # Create file name from description
        file_name = description.lower().replace(" ", "-").replace("/", "-")
        if not file_name:
            file_name = "cursor-rule"
        
        return {
            "name": f"{file_name}.mdc",
            "data": rule
        }
    
    download_btn.click(
        fn=download_rule,
        inputs=[rule_output, description],
        outputs=[gr.File()]
    )

# Launch the app
if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=int(os.environ.get("PORT", 7860)),
        share=True
    )