File size: 45,152 Bytes
1a2c9f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 |
"""
Cursor Rules Generator - Hugging Face Spaces App
This module implements the Gradio interface for Hugging Face Spaces deployment.
All code is self-contained in this file to avoid import issues.
"""
import os
import gradio as gr
import json
import requests
import traceback
from dotenv import load_dotenv
from abc import ABC, abstractmethod
from typing import Dict, List, Optional, Any
# Load environment variables
load_dotenv()
# Configuration settings
class Settings:
"""Application settings."""
# Application settings
APP_NAME = "Cursor Rules Generator"
DEBUG = os.getenv("DEBUG", "False").lower() == "true"
# API keys
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY", "")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY", "")
# Default settings
DEFAULT_PROVIDER = os.getenv("DEFAULT_PROVIDER", "gemini")
DEFAULT_RULE_TYPE = os.getenv("DEFAULT_RULE_TYPE", "Always")
# LLM provider settings
GEMINI_API_URL = "https://generativelanguage.googleapis.com/v1beta"
OPENAI_API_URL = "https://api.openai.com/v1"
OPENROUTER_API_URL = "https://openrouter.ai/api/v1"
# LLM model settings
DEFAULT_GEMINI_MODEL = os.getenv("DEFAULT_GEMINI_MODEL", "gemini-2.0-flash")
DEFAULT_OPENAI_MODEL = os.getenv("DEFAULT_OPENAI_MODEL", "gpt-4o")
DEFAULT_OPENROUTER_MODEL = os.getenv("DEFAULT_OPENROUTER_MODEL", "openai/gpt-4o")
# Rule generation settings
MAX_RULE_LENGTH = int(os.getenv("MAX_RULE_LENGTH", "10000"))
DEFAULT_TEMPERATURE = float(os.getenv("DEFAULT_TEMPERATURE", "0.7"))
# LLM Adapter Interface
class LLMAdapter(ABC):
"""Base adapter interface for LLM providers."""
@abstractmethod
def initialize(self, api_key: str, **kwargs) -> None:
"""Initialize the adapter with API key and optional parameters."""
pass
@abstractmethod
def validate_api_key(self, api_key: str) -> bool:
"""Validate the API key."""
pass
@abstractmethod
def get_available_models(self) -> List[Dict[str, str]]:
"""Get a list of available models from the provider."""
pass
@abstractmethod
def generate_rule(
self,
model: str,
rule_type: str,
description: str,
content: str,
parameters: Optional[Dict[str, Any]] = None
) -> str:
"""Generate a Cursor Rule using the LLM provider."""
pass
# Gemini Adapter
class GeminiAdapter(LLMAdapter):
"""Adapter for Google's Gemini API."""
def __init__(self):
"""Initialize the Gemini adapter."""
self.api_key = None
self.api_url = Settings.GEMINI_API_URL
self.initialized = False
self.last_error = None
def initialize(self, api_key: str, **kwargs) -> None:
"""Initialize the adapter with API key and optional parameters."""
self.api_key = api_key
self.api_url = kwargs.get('api_url', Settings.GEMINI_API_URL)
self.initialized = True
def validate_api_key(self, api_key: str) -> bool:
"""Validate the Gemini API key."""
try:
# Try to list models with the provided API key
url = f"{self.api_url}/models?key={api_key}"
response = requests.get(url)
# Check if the request was successful
if response.status_code == 200:
return True
# Store error details for debugging
self.last_error = f"API Error: Status {response.status_code}, Response: {response.text}"
print(f"Gemini API validation failed: {self.last_error}")
return False
except Exception as e:
# Store exception details for debugging
self.last_error = f"Exception: {str(e)}\n{traceback.format_exc()}"
print(f"Gemini API validation exception: {self.last_error}")
return False
def get_available_models(self) -> List[Dict[str, str]]:
"""Get a list of available Gemini models."""
if not self.initialized:
raise ValueError("Adapter not initialized. Call initialize() first.")
try:
# Get available models
url = f"{self.api_url}/models?key={self.api_key}"
response = requests.get(url)
if response.status_code != 200:
print(f"Failed to get models: Status {response.status_code}, Response: {response.text}")
raise ValueError(f"Failed to get models: {response.text}")
data = response.json()
# Filter for Gemini models and format the response
models = []
for model in data.get('models', []):
if 'gemini' in model.get('name', '').lower():
model_id = model.get('name').split('/')[-1]
models.append({
'id': model_id,
'name': self._format_model_name(model_id)
})
# If no models found, return default models
if not models:
models = [
{'id': 'gemini-2.5-pro', 'name': 'Gemini 2.5 Pro'},
{'id': 'gemini-2.0-flash', 'name': 'Gemini 2.0 Flash'},
{'id': 'gemini-2.0-flash-lite', 'name': 'Gemini 2.0 Flash-Lite'}
]
return models
except Exception as e:
print(f"Exception in get_available_models: {str(e)}\n{traceback.format_exc()}")
# Return default models on error
return [
{'id': 'gemini-2.5-pro', 'name': 'Gemini 2.5 Pro'},
{'id': 'gemini-2.0-flash', 'name': 'Gemini 2.0 Flash'},
{'id': 'gemini-2.0-flash-lite', 'name': 'Gemini 2.0 Flash-Lite'}
]
def generate_rule(
self,
model: str,
rule_type: str,
description: str,
content: str,
parameters: Optional[Dict[str, Any]] = None
) -> str:
"""Generate a Cursor Rule using Gemini."""
if not self.initialized:
raise ValueError("Adapter not initialized. Call initialize() first.")
# Set default parameters if not provided
if parameters is None:
parameters = {}
# Extract parameters
temperature = parameters.get('temperature', Settings.DEFAULT_TEMPERATURE)
globs = parameters.get('globs', '')
referenced_files = parameters.get('referenced_files', '')
prompt = parameters.get('prompt', '')
# Prepare the prompt for Gemini
system_prompt = """
You are a Cursor Rules expert. Create a rule in MDC format based on the provided information.
MDC format example:
---
description: RPC Service boilerplate
globs:
alwaysApply: false
---
- Use our internal RPC pattern when defining services
- Always use snake_case for service names.
@service-template.ts
"""
user_prompt = f"""
Create a Cursor Rule with the following details:
Rule Type: {rule_type}
Description: {description}
Content: {content}
"""
if globs:
user_prompt += f"\nGlobs: {globs}"
if referenced_files:
user_prompt += f"\nReferenced Files: {referenced_files}"
if prompt:
user_prompt += f"\nAdditional Instructions: {prompt}"
# Prepare the API request
url = f"{self.api_url}/models/{model}:generateContent?key={self.api_key}"
payload = {
"contents": [
{
"role": "user",
"parts": [
{"text": system_prompt + "\n\n" + user_prompt}
]
}
],
"generationConfig": {
"temperature": temperature,
"topP": 0.8,
"topK": 40,
"maxOutputTokens": 2048
}
}
# Make the API request
try:
response = requests.post(url, json=payload)
if response.status_code != 200:
print(f"Failed to generate rule: Status {response.status_code}, Response: {response.text}")
raise ValueError(f"Failed to generate rule: {response.text}")
data = response.json()
# Extract the generated text
generated_text = data.get('candidates', [{}])[0].get('content', {}).get('parts', [{}])[0].get('text', '')
# If no text was generated, create a basic rule
if not generated_text:
return self._create_basic_rule(rule_type, description, content, globs, referenced_files)
return generated_text
except Exception as e:
print(f"Exception in generate_rule: {str(e)}\n{traceback.format_exc()}")
# Create a basic rule on error
return self._create_basic_rule(rule_type, description, content, globs, referenced_files)
def _format_model_name(self, model_id: str) -> str:
"""Format a model ID into a human-readable name."""
# Replace hyphens with spaces and capitalize each word
name = model_id.replace('-', ' ').title()
# Special case handling
name = name.replace('Gemini ', 'Gemini ')
name = name.replace('Pro ', 'Pro ')
name = name.replace('Flash ', 'Flash ')
name = name.replace('Lite', 'Lite')
return name
def _create_basic_rule(
self,
rule_type: str,
description: str,
content: str,
globs: str = '',
referenced_files: str = ''
) -> str:
"""Create a basic rule in MDC format without using the LLM."""
# Create MDC format
mdc = '---\n'
mdc += f'description: {description}\n'
if rule_type == 'Auto Attached' and globs:
mdc += f'globs: {globs}\n'
if rule_type == 'Always':
mdc += 'alwaysApply: true\n'
else:
mdc += 'alwaysApply: false\n'
mdc += '---\n\n'
mdc += content + '\n'
# Add referenced files
if referenced_files:
mdc += '\n' + referenced_files
return mdc
# OpenAI Adapter
class OpenAIAdapter(LLMAdapter):
"""Adapter for OpenAI API."""
def __init__(self):
"""Initialize the OpenAI adapter."""
self.api_key = None
self.api_url = Settings.OPENAI_API_URL
self.initialized = False
self.last_error = None
def initialize(self, api_key: str, **kwargs) -> None:
"""Initialize the adapter with API key and optional parameters."""
self.api_key = api_key
self.api_url = kwargs.get('api_url', Settings.OPENAI_API_URL)
self.initialized = True
def validate_api_key(self, api_key: str) -> bool:
"""Validate the OpenAI API key."""
try:
# Try to list models with the provided API key
url = f"{self.api_url}/models"
headers = {
"Authorization": f"Bearer {api_key}"
}
response = requests.get(url, headers=headers)
# Check if the request was successful
if response.status_code == 200:
return True
# Store error details for debugging
self.last_error = f"API Error: Status {response.status_code}, Response: {response.text}"
print(f"OpenAI API validation failed: {self.last_error}")
return False
except Exception as e:
# Store exception details for debugging
self.last_error = f"Exception: {str(e)}\n{traceback.format_exc()}"
print(f"OpenAI API validation exception: {self.last_error}")
return False
def get_available_models(self) -> List[Dict[str, str]]:
"""Get a list of available OpenAI models."""
if not self.initialized:
raise ValueError("Adapter not initialized. Call initialize() first.")
try:
# Get available models
url = f"{self.api_url}/models"
headers = {
"Authorization": f"Bearer {self.api_key}"
}
response = requests.get(url, headers=headers)
if response.status_code != 200:
print(f"Failed to get models: Status {response.status_code}, Response: {response.text}")
raise ValueError(f"Failed to get models: {response.text}")
data = response.json()
# Filter for chat models and format the response
models = []
for model in data.get('data', []):
model_id = model.get('id')
if any(prefix in model_id for prefix in ['gpt-4', 'gpt-3.5']):
models.append({
'id': model_id,
'name': self._format_model_name(model_id)
})
# If no models found, return default models
if not models:
models = [
{'id': 'gpt-4o', 'name': 'GPT-4o'},
{'id': 'gpt-4-turbo', 'name': 'GPT-4 Turbo'},
{'id': 'gpt-3.5-turbo', 'name': 'GPT-3.5 Turbo'}
]
return models
except Exception as e:
print(f"Exception in get_available_models: {str(e)}\n{traceback.format_exc()}")
# Return default models on error
return [
{'id': 'gpt-4o', 'name': 'GPT-4o'},
{'id': 'gpt-4-turbo', 'name': 'GPT-4 Turbo'},
{'id': 'gpt-3.5-turbo', 'name': 'GPT-3.5 Turbo'}
]
def generate_rule(
self,
model: str,
rule_type: str,
description: str,
content: str,
parameters: Optional[Dict[str, Any]] = None
) -> str:
"""Generate a Cursor Rule using OpenAI."""
if not self.initialized:
raise ValueError("Adapter not initialized. Call initialize() first.")
# Set default parameters if not provided
if parameters is None:
parameters = {}
# Extract parameters
temperature = parameters.get('temperature', Settings.DEFAULT_TEMPERATURE)
globs = parameters.get('globs', '')
referenced_files = parameters.get('referenced_files', '')
prompt = parameters.get('prompt', '')
# Prepare the prompt for OpenAI
system_prompt = """
You are a Cursor Rules expert. Create a rule in MDC format based on the provided information.
MDC format example:
---
description: RPC Service boilerplate
globs:
alwaysApply: false
---
- Use our internal RPC pattern when defining services
- Always use snake_case for service names.
@service-template.ts
"""
user_prompt = f"""
Create a Cursor Rule with the following details:
Rule Type: {rule_type}
Description: {description}
Content: {content}
"""
if globs:
user_prompt += f"\nGlobs: {globs}"
if referenced_files:
user_prompt += f"\nReferenced Files: {referenced_files}"
if prompt:
user_prompt += f"\nAdditional Instructions: {prompt}"
# Prepare the API request
url = f"{self.api_url}/chat/completions"
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
payload = {
"model": model,
"messages": [
{
"role": "system",
"content": system_prompt
},
{
"role": "user",
"content": user_prompt
}
],
"temperature": temperature,
"max_tokens": 2048
}
# Make the API request
try:
response = requests.post(url, headers=headers, json=payload)
if response.status_code != 200:
print(f"Failed to generate rule: Status {response.status_code}, Response: {response.text}")
raise ValueError(f"Failed to generate rule: {response.text}")
data = response.json()
# Extract the generated text
generated_text = data.get('choices', [{}])[0].get('message', {}).get('content', '')
# If no text was generated, create a basic rule
if not generated_text:
return self._create_basic_rule(rule_type, description, content, globs, referenced_files)
return generated_text
except Exception as e:
print(f"Exception in generate_rule: {str(e)}\n{traceback.format_exc()}")
# Create a basic rule on error
return self._create_basic_rule(rule_type, description, content, globs, referenced_files)
def _format_model_name(self, model_id: str) -> str:
"""Format a model ID into a human-readable name."""
# Replace hyphens with spaces and capitalize each word
name = model_id.replace('-', ' ').title()
# Special case handling
name = name.replace('Gpt ', 'GPT ')
name = name.replace('Gpt4', 'GPT-4')
name = name.replace('Gpt3', 'GPT-3')
name = name.replace('Gpt 4', 'GPT-4')
name = name.replace('Gpt 3', 'GPT-3')
name = name.replace('Turbo', 'Turbo')
name = name.replace('O', 'o')
return name
def _create_basic_rule(
self,
rule_type: str,
description: str,
content: str,
globs: str = '',
referenced_files: str = ''
) -> str:
"""Create a basic rule in MDC format without using the LLM."""
# Create MDC format
mdc = '---\n'
mdc += f'description: {description}\n'
if rule_type == 'Auto Attached' and globs:
mdc += f'globs: {globs}\n'
if rule_type == 'Always':
mdc += 'alwaysApply: true\n'
else:
mdc += 'alwaysApply: false\n'
mdc += '---\n\n'
mdc += content + '\n'
# Add referenced files
if referenced_files:
mdc += '\n' + referenced_files
return mdc
# OpenRouter Adapter
class OpenRouterAdapter(LLMAdapter):
"""Adapter for OpenRouter API."""
def __init__(self):
"""Initialize the OpenRouter adapter."""
self.api_key = None
self.api_url = Settings.OPENROUTER_API_URL
self.initialized = False
self.last_error = None
def initialize(self, api_key: str, **kwargs) -> None:
"""Initialize the adapter with API key and optional parameters."""
self.api_key = api_key
self.api_url = kwargs.get('api_url', Settings.OPENROUTER_API_URL)
self.site_url = kwargs.get('site_url', 'https://cursor-rules-generator.example.com')
self.site_name = kwargs.get('site_name', 'Cursor Rules Generator')
self.initialized = True
def validate_api_key(self, api_key: str) -> bool:
"""Validate the OpenRouter API key."""
try:
# Try to list models with the provided API key
url = f"{self.api_url}/models"
headers = {
"Authorization": f"Bearer {api_key}"
}
response = requests.get(url, headers=headers)
# Check if the request was successful
if response.status_code == 200:
return True
# Store error details for debugging
self.last_error = f"API Error: Status {response.status_code}, Response: {response.text}"
print(f"OpenRouter API validation failed: {self.last_error}")
return False
except Exception as e:
# Store exception details for debugging
self.last_error = f"Exception: {str(e)}\n{traceback.format_exc()}"
print(f"OpenRouter API validation exception: {self.last_error}")
return False
def get_available_models(self) -> List[Dict[str, str]]:
"""Get a list of available OpenRouter models."""
if not self.initialized:
raise ValueError("Adapter not initialized. Call initialize() first.")
try:
# Get available models
url = f"{self.api_url}/models"
headers = {
"Authorization": f"Bearer {self.api_key}"
}
response = requests.get(url, headers=headers)
if response.status_code != 200:
print(f"Failed to get models: Status {response.status_code}, Response: {response.text}")
raise ValueError(f"Failed to get models: {response.text}")
data = response.json()
# Format the response
models = []
for model in data.get('data', []):
model_id = model.get('id')
model_name = model.get('name', model_id)
# Skip non-chat models
if not model.get('capabilities', {}).get('chat'):
continue
models.append({
'id': model_id,
'name': model_name
})
# If no models found, return default models
if not models:
models = [
{'id': 'openai/gpt-4o', 'name': 'OpenAI GPT-4o'},
{'id': 'anthropic/claude-3-opus', 'name': 'Anthropic Claude 3 Opus'},
{'id': 'google/gemini-2.5-pro', 'name': 'Google Gemini 2.5 Pro'},
{'id': 'meta-llama/llama-3-70b-instruct', 'name': 'Meta Llama 3 70B'}
]
return models
except Exception as e:
print(f"Exception in get_available_models: {str(e)}\n{traceback.format_exc()}")
# Return default models on error
return [
{'id': 'openai/gpt-4o', 'name': 'OpenAI GPT-4o'},
{'id': 'anthropic/claude-3-opus', 'name': 'Anthropic Claude 3 Opus'},
{'id': 'google/gemini-2.5-pro', 'name': 'Google Gemini 2.5 Pro'},
{'id': 'meta-llama/llama-3-70b-instruct', 'name': 'Meta Llama 3 70B'}
]
def generate_rule(
self,
model: str,
rule_type: str,
description: str,
content: str,
parameters: Optional[Dict[str, Any]] = None
) -> str:
"""Generate a Cursor Rule using OpenRouter."""
if not self.initialized:
raise ValueError("Adapter not initialized. Call initialize() first.")
# Set default parameters if not provided
if parameters is None:
parameters = {}
# Extract parameters
temperature = parameters.get('temperature', Settings.DEFAULT_TEMPERATURE)
globs = parameters.get('globs', '')
referenced_files = parameters.get('referenced_files', '')
prompt = parameters.get('prompt', '')
# Prepare the prompt for OpenRouter
system_prompt = """
You are a Cursor Rules expert. Create a rule in MDC format based on the provided information.
MDC format example:
---
description: RPC Service boilerplate
globs:
alwaysApply: false
---
- Use our internal RPC pattern when defining services
- Always use snake_case for service names.
@service-template.ts
"""
user_prompt = f"""
Create a Cursor Rule with the following details:
Rule Type: {rule_type}
Description: {description}
Content: {content}
"""
if globs:
user_prompt += f"\nGlobs: {globs}"
if referenced_files:
user_prompt += f"\nReferenced Files: {referenced_files}"
if prompt:
user_prompt += f"\nAdditional Instructions: {prompt}"
# Prepare the API request
url = f"{self.api_url}/chat/completions"
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
"HTTP-Referer": self.site_url,
"X-Title": self.site_name
}
payload = {
"model": model,
"messages": [
{
"role": "system",
"content": system_prompt
},
{
"role": "user",
"content": user_prompt
}
],
"temperature": temperature,
"max_tokens": 2048
}
# Make the API request
try:
response = requests.post(url, headers=headers, json=payload)
if response.status_code != 200:
print(f"Failed to generate rule: Status {response.status_code}, Response: {response.text}")
raise ValueError(f"Failed to generate rule: {response.text}")
data = response.json()
# Extract the generated text
generated_text = data.get('choices', [{}])[0].get('message', {}).get('content', '')
# If no text was generated, create a basic rule
if not generated_text:
return self._create_basic_rule(rule_type, description, content, globs, referenced_files)
return generated_text
except Exception as e:
print(f"Exception in generate_rule: {str(e)}\n{traceback.format_exc()}")
# Create a basic rule on error
return self._create_basic_rule(rule_type, description, content, globs, referenced_files)
def _create_basic_rule(
self,
rule_type: str,
description: str,
content: str,
globs: str = '',
referenced_files: str = ''
) -> str:
"""Create a basic rule in MDC format without using the LLM."""
# Create MDC format
mdc = '---\n'
mdc += f'description: {description}\n'
if rule_type == 'Auto Attached' and globs:
mdc += f'globs: {globs}\n'
if rule_type == 'Always':
mdc += 'alwaysApply: true\n'
else:
mdc += 'alwaysApply: false\n'
mdc += '---\n\n'
mdc += content + '\n'
# Add referenced files
if referenced_files:
mdc += '\n' + referenced_files
return mdc
# LLM Adapter Factory
class LLMAdapterFactory:
"""Factory for creating LLM adapters."""
@staticmethod
def create_adapter(provider_name: str) -> LLMAdapter:
"""Create an adapter for the specified provider."""
provider_name = provider_name.lower()
if provider_name == "gemini":
return GeminiAdapter()
elif provider_name == "openai":
return OpenAIAdapter()
elif provider_name == "openrouter":
return OpenRouterAdapter()
else:
raise ValueError(f"Unsupported provider: {provider_name}")
@staticmethod
def get_supported_providers() -> Dict[str, str]:
"""Get a dictionary of supported providers."""
return {
"gemini": "Google Gemini",
"openai": "OpenAI",
"openrouter": "OpenRouter"
}
# Rule Generator
class RuleGenerator:
"""Engine for generating Cursor Rules."""
def __init__(self):
"""Initialize the rule generator."""
self.factory = LLMAdapterFactory()
def create_rule(
self,
provider: str,
model: str,
rule_type: str,
description: str,
content: str,
api_key: str,
parameters: Optional[Dict[str, Any]] = None
) -> str:
"""Create a Cursor Rule using the specified LLM provider."""
# Set default parameters if not provided
if parameters is None:
parameters = {}
try:
# Create and initialize the adapter
adapter = self.factory.create_adapter(provider)
adapter.initialize(api_key)
# Generate the rule using the adapter
rule = adapter.generate_rule(model, rule_type, description, content, parameters)
return rule
except Exception as e:
print(f"Exception in create_rule: {str(e)}\n{traceback.format_exc()}")
# If LLM generation fails, create a basic rule
return self._create_basic_rule(rule_type, description, content, parameters)
def _create_basic_rule(
self,
rule_type: str,
description: str,
content: str,
parameters: Optional[Dict[str, Any]] = None
) -> str:
"""Create a basic rule in MDC format without using an LLM."""
# Set default parameters if not provided
if parameters is None:
parameters = {}
# Extract parameters
globs = parameters.get('globs', '')
referenced_files = parameters.get('referenced_files', '')
# Create MDC format
mdc = '---\n'
mdc += f'description: {description}\n'
if rule_type == 'Auto Attached' and globs:
mdc += f'globs: {globs}\n'
if rule_type == 'Always':
mdc += 'alwaysApply: true\n'
else:
mdc += 'alwaysApply: false\n'
mdc += '---\n\n'
mdc += content + '\n'
# Add referenced files
if referenced_files:
mdc += '\n' + referenced_files
return mdc
def validate_rule_type(self, rule_type: str) -> bool:
"""Validate if the rule type is supported."""
valid_types = ['Always', 'Auto Attached', 'Agent Requested', 'Manual']
return rule_type in valid_types
def get_rule_types(self) -> List[Dict[str, str]]:
"""Get a list of supported rule types."""
return [
{
'id': 'Always',
'name': 'Always',
'description': 'Always included in the model context'
},
{
'id': 'Auto Attached',
'name': 'Auto Attached',
'description': 'Included when files matching glob patterns are referenced'
},
{
'id': 'Agent Requested',
'name': 'Agent Requested',
'description': 'Rule is presented to the AI, which decides whether to include it'
},
{
'id': 'Manual',
'name': 'Manual',
'description': 'Only included when explicitly referenced using @ruleName'
}
]
# Initialize components
rule_generator = RuleGenerator()
factory = LLMAdapterFactory()
# Get supported providers
providers = factory.get_supported_providers()
provider_choices = list(providers.keys())
# Get rule types
rule_types = rule_generator.get_rule_types()
rule_type_choices = [rt['id'] for rt in rule_types]
def validate_api_key(provider, api_key):
"""Validate an API key for a specific provider.
Args:
provider: The LLM provider
api_key: The API key to validate
Returns:
tuple: (success, message, model_names, model_ids)
"""
if not provider or not api_key:
return False, "Lütfen bir sağlayıcı seçin ve API anahtarı girin.", [], []
try:
# Create the adapter
adapter = factory.create_adapter(provider)
# Print debug info
print(f"Validating {provider} API key: {api_key[:5]}...{api_key[-5:] if len(api_key) > 10 else ''}")
# Validate the API key
valid = adapter.validate_api_key(api_key)
if valid:
# Initialize the adapter
adapter.initialize(api_key)
# Get available models
models = adapter.get_available_models()
model_names = [model['name'] for model in models]
model_ids = [model['id'] for model in models]
print(f"Models found: {model_names}")
print(f"Model IDs: {model_ids}")
# Use default models if none are returned
if not model_names or not model_ids:
if provider == "gemini":
model_names = ["Gemini 2.5 Pro", "Gemini 2.0 Flash", "Gemini 2.0 Flash-Lite"]
model_ids = ["gemini-2.5-pro", "gemini-2.0-flash", "gemini-2.0-flash-lite"]
elif provider == "openai":
model_names = ["GPT-4o", "GPT-4 Turbo", "GPT-3.5 Turbo"]
model_ids = ["gpt-4o", "gpt-4-turbo", "gpt-3.5-turbo"]
elif provider == "openrouter":
model_names = ["OpenAI GPT-4o", "Anthropic Claude 3 Opus", "Google Gemini 2.5 Pro"]
model_ids = ["openai/gpt-4o", "anthropic/claude-3-opus", "google/gemini-2.5-pro"]
print(f"Using default models: {model_names}")
return True, "API anahtarı doğrulandı.", model_names, model_ids
else:
error_msg = getattr(adapter, 'last_error', 'Bilinmeyen hata')
return False, f"Geçersiz API anahtarı. Hata: {error_msg}", [], []
except Exception as e:
error_details = traceback.format_exc()
print(f"Exception in validate_api_key: {str(e)}\n{error_details}")
return False, f"Hata: {str(e)}", [], []
def generate_rule(provider, api_key, model_index, model_ids, rule_type, description, content, globs, referenced_files, prompt, temperature):
"""Generate a Cursor Rule.
Args:
provider: The LLM provider
api_key: The API key for the provider
model_index: The index of the selected model
model_ids: The list of model IDs
rule_type: The type of rule to generate
description: A short description of the rule's purpose
content: The main content of the rule
globs: Glob patterns for Auto Attached rules
referenced_files: Referenced files
prompt: Additional instructions for the LLM
temperature: Temperature parameter for generation
Returns:
tuple: (success, message, rule)
"""
print(f"Generate rule called with model_index: {model_index}, model_ids: {model_ids}")
if not provider or not api_key:
return False, "Lütfen bir sağlayıcı seçin ve API anahtarı girin.", ""
if model_index is None or model_index == "":
return False, "Lütfen bir model seçin. Model seçimi yapılamıyorsa, API anahtarını tekrar doğrulayın.", ""
if not rule_type or not description or not content:
return False, "Lütfen kural tipi, açıklama ve içerik alanlarını doldurun.", ""
# Convert model_index to integer if it's a string
try:
if isinstance(model_index, str) and model_index.isdigit():
model_index = int(model_index)
except:
pass
# Get the model ID
if not model_ids:
return False, "Model listesi bulunamadı. Lütfen API anahtarını tekrar doğrulayın.", ""
try:
model_index = int(model_index)
except:
return False, f"Geçersiz model indeksi: {model_index}", ""
if model_index < 0 or model_index >= len(model_ids):
return False, f"Geçersiz model seçimi. İndeks: {model_index}, Mevcut modeller: {len(model_ids)}", ""
model = model_ids[model_index]
# Validate rule type
if not rule_generator.validate_rule_type(rule_type):
return False, f"Geçersiz kural tipi: {rule_type}", ""
# Validate globs for Auto Attached rule type
if rule_type == 'Auto Attached' and not globs:
return False, "Auto Attached kural tipi için glob desenleri gereklidir.", ""
try:
# Prepare parameters
parameters = {
'globs': globs,
'referenced_files': referenced_files,
'prompt': prompt,
'temperature': float(temperature) if temperature else 0.7
}
# Generate the rule
rule = rule_generator.create_rule(
provider=provider,
model=model,
rule_type=rule_type,
description=description,
content=content,
api_key=api_key,
parameters=parameters
)
return True, "Kural başarıyla oluşturuldu.", rule
except Exception as e:
error_details = traceback.format_exc()
print(f"Exception in generate_rule: {str(e)}\n{error_details}")
return False, f"Kural oluşturulurken bir hata oluştu: {str(e)}", ""
def update_rule_type_info(rule_type):
"""Update the rule type information.
Args:
rule_type: The selected rule type
Returns:
str: Information about the selected rule type
"""
if rule_type == 'Always':
return "Her zaman model bağlamına dahil edilir."
elif rule_type == 'Auto Attached':
return "Glob desenine uyan dosyalar referans alındığında dahil edilir."
elif rule_type == 'Agent Requested':
return "Kural AI'ya sunulur, dahil edilip edilmeyeceğine AI karar verir."
elif rule_type == 'Manual':
return "Yalnızca @ruleName kullanılarak açıkça belirtildiğinde dahil edilir."
else:
return ""
def update_globs_visibility(rule_type):
"""Update the visibility of the globs input.
Args:
rule_type: The selected rule type
Returns:
bool: Whether the globs input should be visible
"""
return rule_type == 'Auto Attached'
# Create Gradio interface
with gr.Blocks(title="Cursor Rules Oluşturucu") as demo:
gr.Markdown("# Cursor Rules Oluşturucu")
gr.Markdown("Gemini, OpenRouter, OpenAI API ve tüm modellerini destekleyen dinamik bir Cursor Rules oluşturucu.")
with gr.Row():
with gr.Column():
provider = gr.Dropdown(
choices=provider_choices,
label="LLM Sağlayıcı",
value=provider_choices[0] if provider_choices else None
)
api_key = gr.Textbox(
label="API Anahtarı",
placeholder="API anahtarınızı girin",
type="password"
)
validate_btn = gr.Button("API Anahtarını Doğrula")
api_status = gr.Textbox(
label="API Durumu",
interactive=False
)
# Default model choices for each provider
default_models = {
"gemini": ["Gemini 2.5 Pro", "Gemini 2.0 Flash", "Gemini 2.0 Flash-Lite"],
"openai": ["GPT-4o", "GPT-4 Turbo", "GPT-3.5 Turbo"],
"openrouter": ["OpenAI GPT-4o", "Anthropic Claude 3 Opus", "Google Gemini 2.5 Pro"]
}
model_dropdown = gr.Dropdown(
label="Model",
choices=default_models.get(provider_choices[0] if provider_choices else "gemini", []),
interactive=True
)
# Hidden field to store model IDs
model_ids = gr.State([])
rule_type = gr.Dropdown(
choices=rule_type_choices,
label="Kural Tipi",
value=rule_type_choices[0] if rule_type_choices else None
)
rule_type_info = gr.Textbox(
label="Kural Tipi Bilgisi",
interactive=False,
value=update_rule_type_info(rule_type_choices[0] if rule_type_choices else "")
)
description = gr.Textbox(
label="Açıklama",
placeholder="Kuralın amacını açıklayan kısa bir açıklama"
)
globs = gr.Textbox(
label="Glob Desenleri (Auto Attached için)",
placeholder="Örn: *.ts, src/*.js",
visible=False
)
content = gr.Textbox(
label="Kural İçeriği",
placeholder="Kuralın ana içeriği",
lines=10
)
referenced_files = gr.Textbox(
label="Referans Dosyaları (İsteğe bağlı)",
placeholder="Her satıra bir dosya adı girin, örn: @service-template.ts",
lines=3
)
prompt = gr.Textbox(
label="AI Prompt (İsteğe bağlı)",
placeholder="AI'ya özel talimatlar verin",
lines=3
)
temperature = gr.Slider(
label="Sıcaklık",
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1
)
generate_btn = gr.Button("Kural Oluştur")
with gr.Column():
generation_status = gr.Textbox(
label="Durum",
interactive=False
)
rule_output = gr.Textbox(
label="Oluşturulan Kural",
lines=20,
interactive=False
)
download_btn = gr.Button("İndir")
# Provider change handler to update default models
def update_default_models(provider_value):
if provider_value == "gemini":
return gr.Dropdown.update(choices=default_models["gemini"], value=default_models["gemini"][0] if default_models["gemini"] else None)
elif provider_value == "openai":
return gr.Dropdown.update(choices=default_models["openai"], value=default_models["openai"][0] if default_models["openai"] else None)
elif provider_value == "openrouter":
return gr.Dropdown.update(choices=default_models["openrouter"], value=default_models["openrouter"][0] if default_models["openrouter"] else None)
else:
return gr.Dropdown.update(choices=[], value=None)
provider.change(
fn=update_default_models,
inputs=[provider],
outputs=[model_dropdown]
)
# API key validation
validate_btn.click(
fn=validate_api_key,
inputs=[provider, api_key],
outputs=[api_status, model_dropdown, model_ids]
)
# Rule type change
rule_type.change(
fn=update_rule_type_info,
inputs=[rule_type],
outputs=[rule_type_info]
)
rule_type.change(
fn=update_globs_visibility,
inputs=[rule_type],
outputs=[globs]
)
# Generate rule
generate_btn.click(
fn=generate_rule,
inputs=[
provider,
api_key,
model_dropdown,
model_ids,
rule_type,
description,
content,
globs,
referenced_files,
prompt,
temperature
],
outputs=[generation_status, rule_output]
)
# Download rule
def download_rule(rule, description):
if not rule:
return None
# Create file name from description
file_name = description.lower().replace(" ", "-").replace("/", "-")
if not file_name:
file_name = "cursor-rule"
return {
"name": f"{file_name}.mdc",
"data": rule
}
download_btn.click(
fn=download_rule,
inputs=[rule_output, description],
outputs=[gr.File()]
)
# Launch the app
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=int(os.environ.get("PORT", 7860)),
share=True
)
|