File size: 5,008 Bytes
5c76a8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7611753
 
 
 
 
 
5c76a8f
7611753
 
 
5c76a8f
7611753
 
 
 
 
 
5c76a8f
7611753
 
 
5c76a8f
7611753
 
 
 
 
 
 
5c76a8f
7611753
 
 
 
 
 
 
 
5c76a8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import gradio as gr
import torch
import os
import spaces
import uuid

from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler
from diffusers.utils import export_to_video
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image

# Constants
bases = {
    "Cartoon": "frankjoshua/toonyou_beta6",
    "Realistic": "emilianJR/epiCRealism", 
    "3d": "Lykon/DreamShaper",
    "Anime": "Yntec/mistoonAnime2"
}
step_loaded = None
base_loaded = "Realistic"
motion_loaded = None

# CPU configuration
device = "cpu"
dtype = torch.float32

# Initialize pipeline for CPU
pipe = AnimateDiffPipeline.from_pretrained(bases[base_loaded], torch_dtype=dtype).to(device)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")

# Safety checkers
from transformers import CLIPFeatureExtractor

feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32")

# Function 
def generate_image(prompt, base="Realistic", motion="", step=8, progress=gr.Progress()):
    global step_loaded
    global base_loaded
    global motion_loaded
    print(prompt, base, step)

    try:
        if step_loaded != step:
            repo = "ByteDance/AnimateDiff-Lightning"
            ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
            pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
            step_loaded = step

        if base_loaded != base:
            pipe.unet.load_state_dict(torch.load(hf_hub_download(bases[base], "unet/diffusion_pytorch_model.bin"), map_location=device), strict=False)
            base_loaded = base

        if motion_loaded != motion:
            pipe.unload_lora_weights()
            if motion != "":
                pipe.load_lora_weights(motion, adapter_name="motion")
                pipe.set_adapters(["motion"], [0.7])
            motion_loaded = motion

        progress((0, step))
        def progress_callback(i, t, z):
            progress((i+1, step))

        output = pipe(
            prompt=prompt, 
            guidance_scale=1.2, 
            num_inference_steps=step, 
            callback=progress_callback, 
            callback_steps=1
        )

        name = str(uuid.uuid4()).replace("-", "")
        path = f"/tmp/{name}.mp4"
        export_to_video(output.frames[0], path, fps=10)
        return path
    
    except Exception as e:
        print(f"Error during generation: {str(e)}")
        return None
# Gradio Interface
with gr.Blocks(css="style.css") as demo:
    gr.HTML(
        "<h1><center>Textual Imagination : A Text To Video Synthesis</center></h1>"
        )
    with gr.Group():
        with gr.Row():
            prompt = gr.Textbox(
                label='Prompt'
            )
        with gr.Row():
            select_base = gr.Dropdown(
                label='Base model',
                choices=[
                    "Cartoon", 
                    "Realistic",
                    "3d",
                    "Anime",
                ],
                value=base_loaded,
                interactive=True
            )
            select_motion = gr.Dropdown(
                label='Motion',
                choices=[
                    ("Default", ""),
                    ("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"),
                    ("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"),
                    ("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"),
                    ("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"),
                    ("Pan left", "guoyww/animatediff-motion-lora-pan-left"),
                    ("Pan right", "guoyww/animatediff-motion-lora-pan-right"),
                    ("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"),
                    ("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"),
                ],
                value="guoyww/animatediff-motion-lora-zoom-in",
                interactive=True
            )
            select_step = gr.Dropdown(
                label='Inference steps',
                choices=[
                    ('1-Step', 1), 
                    ('2-Step', 2),
                    ('4-Step', 4),
                    ('8-Step', 8),
                ],
                value=4,
                interactive=True
            )
            submit = gr.Button(
                scale=1,
                variant='primary'
            )
    video = gr.Video(
        label='AnimateDiff-Lightning',
        autoplay=True,
        height=512,
        width=512,
        elem_id="video_output"
    )

    gr.on(triggers=[
            submit.click,
            prompt.submit
    ],
        fn = generate_image,
        inputs = [prompt, select_base, select_motion, select_step],
        outputs = [video],
        api_name = "instant_video",
        queue = False
    )

demo.queue().launch()