shaghayeghhp's picture
Update app.py
c0b845d verified
raw
history blame
5.39 kB
import os
import gradio as gr
import requests
import pandas as pd
from transformers import pipeline
from typing import Optional
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Smart Agent Definition ---
from transformers import pipeline
class BasicAgent:
def __init__(self):
print("Loading advanced model pipeline...")
# You can swap this with another model if you want (like mistralai/Mistral-7B-Instruct-v0.2 if you use HF Inference API)
self.generator = pipeline("text2text-generation", model="google/flan-t5-large")
def __call__(self, question: str) -> str:
try:
prompt = f"Answer the following question clearly and concisely:\n{question.strip()}"
response = self.generator(prompt, max_new_tokens=128, do_sample=False, temperature=0.0)
answer = response[0]["generated_text"].strip()
return answer
except Exception as e:
print(f"Agent failed to answer question: {e}")
return "ERROR"
# --- Submission Logic ---
def run_and_submit_all(profile: Optional[gr.OAuthProfile]):
space_id = os.getenv("SPACE_ID")
if not profile:
print("User not logged in.")
return "Please login to Hugging Face with the button.", None
username = profile.username.strip()
print(f"User logged in: {username}")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Agent code link: {agent_code}")
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = BasicAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty.", None
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or not question_text:
continue
try:
answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": answer})
except Exception as e:
error_msg = f"AGENT ERROR: {e}"
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": error_msg})
if not answers_payload:
return "No answers generated for submission.", pd.DataFrame(results_log)
submission_data = {
"username": username,
"agent_code": agent_code,
"answers": answers_payload
}
print(f"Submitting {len(answers_payload)} answers...")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"βœ… Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')})\n"
f"Message: {result_data.get('message', 'No message')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
return f"❌ Submission failed: {e}", pd.DataFrame(results_log)
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# πŸ€– Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Clone this space and implement your agent logic.
2. Log in with your Hugging Face account using the button below.
3. Click **Run Evaluation & Submit All Answers** to test and submit your agent.
---
⚠️ Note: The first run may take time depending on model and question count.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
# --- Run App ---
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"βœ… SPACE_HOST: {space_host_startup}")
print(f"Runtime URL: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST not set.")
if space_id_startup:
print(f"βœ… SPACE_ID: {space_id_startup}")
print(f"Repo: https://huggingface.co/spaces/{space_id_startup}")
else:
print("ℹ️ SPACE_ID not set.")
print("-" * 80)
print("Launching Gradio App...")
demo.launch(debug=True, share=False)