adn
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,12 @@
|
|
1 |
from fastapi import FastAPI, Request, HTTPException
|
2 |
from fastapi.responses import HTMLResponse
|
3 |
-
from fastapi.staticfiles import StaticFiles
|
4 |
from pydantic import BaseModel
|
5 |
import tensorflow as tf
|
6 |
import numpy as np
|
7 |
import uvicorn
|
8 |
import os
|
9 |
import logging
|
10 |
-
import
|
11 |
-
from typing import Dict, Any
|
12 |
from transformers import AutoTokenizer
|
13 |
|
14 |
# Setup logging
|
@@ -17,28 +15,26 @@ logger = logging.getLogger(__name__)
|
|
17 |
|
18 |
# Configuration
|
19 |
MODEL_PATH = "model.tflite"
|
20 |
-
TOKENIZER_PATH = "tokenizer"
|
21 |
-
LABEL_ENCODER_PATH = "label_encoder.pkl"
|
22 |
MAX_LENGTH = 128
|
23 |
|
24 |
# Inisialisasi FastAPI
|
25 |
app = FastAPI(
|
26 |
title="Damkar Classification API (TFLite)",
|
27 |
-
description="API untuk klasifikasi tipe laporan damkar menggunakan TFLite model",
|
28 |
version="1.0.0"
|
29 |
)
|
30 |
|
31 |
# Global variables
|
32 |
interpreter = None
|
33 |
tokenizer = None
|
34 |
-
label_encoder = None
|
35 |
input_details = None
|
36 |
output_details = None
|
37 |
|
38 |
@app.on_event("startup")
|
39 |
async def load_model():
|
40 |
"""Load model dan dependencies saat aplikasi startup"""
|
41 |
-
global interpreter, tokenizer,
|
42 |
|
43 |
try:
|
44 |
logger.info("Loading TFLite model...")
|
@@ -54,62 +50,36 @@ async def load_model():
|
|
54 |
input_details = interpreter.get_input_details()
|
55 |
output_details = interpreter.get_output_details()
|
56 |
|
57 |
-
logger.info(f"Model loaded
|
|
|
|
|
58 |
|
59 |
# Load tokenizer
|
60 |
logger.info("Loading tokenizer...")
|
61 |
if os.path.exists(TOKENIZER_PATH):
|
62 |
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH)
|
63 |
else:
|
64 |
-
# Fallback ke tokenizer online jika tidak ada lokal
|
65 |
logger.warning("Local tokenizer not found, using online tokenizer")
|
66 |
tokenizer = AutoTokenizer.from_pretrained("indobenchmark/indobert-base-p1")
|
67 |
|
68 |
-
# Load label encoder
|
69 |
-
logger.info("Loading label encoder...")
|
70 |
-
if os.path.exists(LABEL_ENCODER_PATH):
|
71 |
-
with open(LABEL_ENCODER_PATH, 'rb') as f:
|
72 |
-
label_encoder = pickle.load(f)
|
73 |
-
else:
|
74 |
-
# Default labels jika tidak ada label encoder
|
75 |
-
logger.warning("Label encoder not found, using default labels")
|
76 |
-
label_encoder = create_default_label_encoder()
|
77 |
-
|
78 |
logger.info("All components loaded successfully!")
|
79 |
|
80 |
except Exception as e:
|
81 |
logger.error(f"Error loading model: {str(e)}")
|
82 |
raise e
|
83 |
|
84 |
-
def create_default_label_encoder():
|
85 |
-
"""Create default label encoder jika file tidak ada"""
|
86 |
-
class DefaultLabelEncoder:
|
87 |
-
def __init__(self):
|
88 |
-
# Sesuaikan dengan kategori yang Anda miliki
|
89 |
-
self.classes_ = [
|
90 |
-
"Kebakaran",
|
91 |
-
"Evakuasi/Penyelamatan Hewan",
|
92 |
-
"Penyelamatan Non Hewan & Bantuan Teknis",
|
93 |
-
"Lain-lain"
|
94 |
-
]
|
95 |
-
|
96 |
-
def inverse_transform(self, encoded):
|
97 |
-
return [self.classes_[i] for i in encoded]
|
98 |
-
|
99 |
-
return DefaultLabelEncoder()
|
100 |
-
|
101 |
def predict_tflite(text: str) -> Dict[str, Any]:
|
102 |
-
"""Fungsi prediksi menggunakan TFLite model"""
|
103 |
-
global interpreter, tokenizer,
|
104 |
|
105 |
-
if not all([interpreter, tokenizer
|
106 |
raise HTTPException(status_code=503, detail="Model components not loaded")
|
107 |
|
108 |
try:
|
109 |
# Resize input tensors
|
110 |
-
interpreter.resize_tensor_input(0, [1, MAX_LENGTH])
|
111 |
-
interpreter.resize_tensor_input(1, [1, MAX_LENGTH])
|
112 |
-
interpreter.resize_tensor_input(2, [1, MAX_LENGTH])
|
113 |
interpreter.allocate_tensors()
|
114 |
|
115 |
# Tokenize text
|
@@ -126,7 +96,7 @@ def predict_tflite(text: str) -> Dict[str, Any]:
|
|
126 |
token_type_ids = encoded['token_type_ids'].astype(np.int32)
|
127 |
attention_mask = encoded['attention_mask'].astype(np.int32)
|
128 |
|
129 |
-
# Set tensors
|
130 |
interpreter.set_tensor(input_details[0]['index'], attention_mask)
|
131 |
interpreter.set_tensor(input_details[1]['index'], input_ids)
|
132 |
interpreter.set_tensor(input_details[2]['index'], token_type_ids)
|
@@ -134,20 +104,25 @@ def predict_tflite(text: str) -> Dict[str, Any]:
|
|
134 |
# Run inference
|
135 |
interpreter.invoke()
|
136 |
|
137 |
-
# Get output
|
138 |
-
|
|
|
|
|
|
|
139 |
|
140 |
-
#
|
141 |
-
|
142 |
-
|
143 |
-
predicted_label = label_encoder.inverse_transform(pred_encoded)[0]
|
144 |
-
confidence = float(np.max(probabilities))
|
145 |
|
146 |
return {
|
147 |
-
"
|
148 |
-
"confidence":
|
149 |
-
"
|
150 |
-
|
|
|
|
|
|
|
|
|
151 |
}
|
152 |
}
|
153 |
|
@@ -160,9 +135,12 @@ class InputText(BaseModel):
|
|
160 |
text: str
|
161 |
|
162 |
class PredictionResponse(BaseModel):
|
163 |
-
|
164 |
confidence: float
|
165 |
-
|
|
|
|
|
|
|
166 |
status: str = "success"
|
167 |
|
168 |
# HTML template untuk UI
|
@@ -170,13 +148,13 @@ HTML_TEMPLATE = """
|
|
170 |
<!DOCTYPE html>
|
171 |
<html>
|
172 |
<head>
|
173 |
-
<title>Damkar Classification</title>
|
174 |
<meta charset="UTF-8">
|
175 |
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
176 |
<style>
|
177 |
body {
|
178 |
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
179 |
-
max-width:
|
180 |
margin: 0 auto;
|
181 |
padding: 20px;
|
182 |
background-color: #f5f5f5;
|
@@ -256,9 +234,10 @@ HTML_TEMPLATE = """
|
|
256 |
display: flex;
|
257 |
justify-content: space-between;
|
258 |
margin: 5px 0;
|
259 |
-
padding:
|
260 |
background-color: #f8f9fa;
|
261 |
border-radius: 4px;
|
|
|
262 |
}
|
263 |
.examples {
|
264 |
margin-top: 20px;
|
@@ -275,11 +254,29 @@ HTML_TEMPLATE = """
|
|
275 |
.example-text:hover {
|
276 |
color: #0056b3;
|
277 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
</style>
|
279 |
</head>
|
280 |
<body>
|
281 |
<div class="container">
|
282 |
-
<h1>🚒
|
|
|
283 |
|
284 |
<div class="form-group">
|
285 |
<label for="textInput">Masukkan teks laporan:</label>
|
@@ -346,20 +343,33 @@ HTML_TEMPLATE = """
|
|
346 |
if (response.ok) {
|
347 |
let resultHTML = `
|
348 |
<h3>Hasil Prediksi:</h3>
|
349 |
-
<p><strong>
|
350 |
<p><strong>Confidence:</strong> ${(data.confidence * 100).toFixed(2)}%</p>
|
351 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
`;
|
353 |
|
354 |
-
|
355 |
-
const percentage = (prob * 100).toFixed(
|
|
|
356 |
resultHTML += `
|
357 |
-
<div class="prob-item">
|
358 |
-
<span
|
359 |
<span>${percentage}%</span>
|
360 |
</div>
|
361 |
`;
|
362 |
-
}
|
|
|
|
|
|
|
|
|
|
|
363 |
|
364 |
showResult('success', resultHTML);
|
365 |
} else {
|
@@ -400,17 +410,29 @@ def read_root():
|
|
400 |
@app.get("/health")
|
401 |
def health_check():
|
402 |
"""Health check endpoint"""
|
403 |
-
global interpreter, tokenizer
|
404 |
|
405 |
-
if not all([interpreter, tokenizer
|
406 |
return {"status": "unhealthy", "message": "Model components not loaded"}
|
407 |
|
408 |
return {
|
409 |
"status": "healthy",
|
410 |
"message": "TFLite model is ready",
|
411 |
"model_info": {
|
412 |
-
"
|
413 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
414 |
"max_length": MAX_LENGTH
|
415 |
}
|
416 |
}
|
@@ -427,11 +449,7 @@ def predict(input: InputText):
|
|
427 |
# Lakukan prediksi
|
428 |
result = predict_tflite(input.text)
|
429 |
|
430 |
-
return PredictionResponse(
|
431 |
-
label=result["label"],
|
432 |
-
confidence=result["confidence"],
|
433 |
-
probabilities=result["probabilities"]
|
434 |
-
)
|
435 |
|
436 |
except HTTPException:
|
437 |
raise
|
@@ -445,6 +463,7 @@ def test_endpoint():
|
|
445 |
return {
|
446 |
"message": "TFLite API is working!",
|
447 |
"status": "ok",
|
|
|
448 |
"endpoints": {
|
449 |
"ui": "/",
|
450 |
"predict": "/predict",
|
|
|
1 |
from fastapi import FastAPI, Request, HTTPException
|
2 |
from fastapi.responses import HTMLResponse
|
|
|
3 |
from pydantic import BaseModel
|
4 |
import tensorflow as tf
|
5 |
import numpy as np
|
6 |
import uvicorn
|
7 |
import os
|
8 |
import logging
|
9 |
+
from typing import Dict, Any, List
|
|
|
10 |
from transformers import AutoTokenizer
|
11 |
|
12 |
# Setup logging
|
|
|
15 |
|
16 |
# Configuration
|
17 |
MODEL_PATH = "model.tflite"
|
18 |
+
TOKENIZER_PATH = "tokenizer"
|
|
|
19 |
MAX_LENGTH = 128
|
20 |
|
21 |
# Inisialisasi FastAPI
|
22 |
app = FastAPI(
|
23 |
title="Damkar Classification API (TFLite)",
|
24 |
+
description="API untuk klasifikasi tipe laporan damkar menggunakan TFLite model - Raw Output",
|
25 |
version="1.0.0"
|
26 |
)
|
27 |
|
28 |
# Global variables
|
29 |
interpreter = None
|
30 |
tokenizer = None
|
|
|
31 |
input_details = None
|
32 |
output_details = None
|
33 |
|
34 |
@app.on_event("startup")
|
35 |
async def load_model():
|
36 |
"""Load model dan dependencies saat aplikasi startup"""
|
37 |
+
global interpreter, tokenizer, input_details, output_details
|
38 |
|
39 |
try:
|
40 |
logger.info("Loading TFLite model...")
|
|
|
50 |
input_details = interpreter.get_input_details()
|
51 |
output_details = interpreter.get_output_details()
|
52 |
|
53 |
+
logger.info(f"Model loaded successfully!")
|
54 |
+
logger.info(f"Input details: {input_details}")
|
55 |
+
logger.info(f"Output details: {output_details}")
|
56 |
|
57 |
# Load tokenizer
|
58 |
logger.info("Loading tokenizer...")
|
59 |
if os.path.exists(TOKENIZER_PATH):
|
60 |
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH)
|
61 |
else:
|
|
|
62 |
logger.warning("Local tokenizer not found, using online tokenizer")
|
63 |
tokenizer = AutoTokenizer.from_pretrained("indobenchmark/indobert-base-p1")
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
logger.info("All components loaded successfully!")
|
66 |
|
67 |
except Exception as e:
|
68 |
logger.error(f"Error loading model: {str(e)}")
|
69 |
raise e
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
def predict_tflite(text: str) -> Dict[str, Any]:
|
72 |
+
"""Fungsi prediksi menggunakan TFLite model - mengembalikan raw output"""
|
73 |
+
global interpreter, tokenizer, input_details, output_details
|
74 |
|
75 |
+
if not all([interpreter, tokenizer]):
|
76 |
raise HTTPException(status_code=503, detail="Model components not loaded")
|
77 |
|
78 |
try:
|
79 |
# Resize input tensors
|
80 |
+
interpreter.resize_tensor_input(input_details[0]['index'], [1, MAX_LENGTH])
|
81 |
+
interpreter.resize_tensor_input(input_details[1]['index'], [1, MAX_LENGTH])
|
82 |
+
interpreter.resize_tensor_input(input_details[2]['index'], [1, MAX_LENGTH])
|
83 |
interpreter.allocate_tensors()
|
84 |
|
85 |
# Tokenize text
|
|
|
96 |
token_type_ids = encoded['token_type_ids'].astype(np.int32)
|
97 |
attention_mask = encoded['attention_mask'].astype(np.int32)
|
98 |
|
99 |
+
# Set tensors - gunakan urutan yang benar
|
100 |
interpreter.set_tensor(input_details[0]['index'], attention_mask)
|
101 |
interpreter.set_tensor(input_details[1]['index'], input_ids)
|
102 |
interpreter.set_tensor(input_details[2]['index'], token_type_ids)
|
|
|
104 |
# Run inference
|
105 |
interpreter.invoke()
|
106 |
|
107 |
+
# Get raw output
|
108 |
+
raw_output = interpreter.get_tensor(output_details[0]['index'])
|
109 |
+
|
110 |
+
# Hitung probabilitas dengan softmax
|
111 |
+
probabilities = tf.nn.softmax(raw_output[0]).numpy()
|
112 |
|
113 |
+
# Prediksi kelas (index dengan probabilitas tertinggi)
|
114 |
+
predicted_class_index = int(np.argmax(raw_output, axis=1)[0])
|
115 |
+
max_confidence = float(np.max(probabilities))
|
|
|
|
|
116 |
|
117 |
return {
|
118 |
+
"predicted_class_index": predicted_class_index,
|
119 |
+
"confidence": max_confidence,
|
120 |
+
"raw_output": raw_output[0].tolist(), # Convert numpy array to list
|
121 |
+
"probabilities": probabilities.tolist(),
|
122 |
+
"input_text": text,
|
123 |
+
"model_info": {
|
124 |
+
"output_shape": raw_output.shape,
|
125 |
+
"num_classes": len(probabilities)
|
126 |
}
|
127 |
}
|
128 |
|
|
|
135 |
text: str
|
136 |
|
137 |
class PredictionResponse(BaseModel):
|
138 |
+
predicted_class_index: int
|
139 |
confidence: float
|
140 |
+
raw_output: List[float]
|
141 |
+
probabilities: List[float]
|
142 |
+
input_text: str
|
143 |
+
model_info: Dict[str, Any]
|
144 |
status: str = "success"
|
145 |
|
146 |
# HTML template untuk UI
|
|
|
148 |
<!DOCTYPE html>
|
149 |
<html>
|
150 |
<head>
|
151 |
+
<title>Damkar Classification - Raw Output</title>
|
152 |
<meta charset="UTF-8">
|
153 |
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
154 |
<style>
|
155 |
body {
|
156 |
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
157 |
+
max-width: 900px;
|
158 |
margin: 0 auto;
|
159 |
padding: 20px;
|
160 |
background-color: #f5f5f5;
|
|
|
234 |
display: flex;
|
235 |
justify-content: space-between;
|
236 |
margin: 5px 0;
|
237 |
+
padding: 8px;
|
238 |
background-color: #f8f9fa;
|
239 |
border-radius: 4px;
|
240 |
+
font-family: monospace;
|
241 |
}
|
242 |
.examples {
|
243 |
margin-top: 20px;
|
|
|
254 |
.example-text:hover {
|
255 |
color: #0056b3;
|
256 |
}
|
257 |
+
.raw-output {
|
258 |
+
background-color: #f8f9fa;
|
259 |
+
padding: 10px;
|
260 |
+
border-radius: 4px;
|
261 |
+
font-family: monospace;
|
262 |
+
font-size: 12px;
|
263 |
+
margin: 10px 0;
|
264 |
+
max-height: 200px;
|
265 |
+
overflow-y: auto;
|
266 |
+
}
|
267 |
+
.model-info {
|
268 |
+
background-color: #e7f3ff;
|
269 |
+
padding: 10px;
|
270 |
+
border-radius: 4px;
|
271 |
+
margin: 10px 0;
|
272 |
+
font-size: 14px;
|
273 |
+
}
|
274 |
</style>
|
275 |
</head>
|
276 |
<body>
|
277 |
<div class="container">
|
278 |
+
<h1>🚒 Damkar Classification - Raw Output</h1>
|
279 |
+
<p style="text-align: center; color: #666;">Menampilkan output mentah dari TFLite model tanpa label encoder</p>
|
280 |
|
281 |
<div class="form-group">
|
282 |
<label for="textInput">Masukkan teks laporan:</label>
|
|
|
343 |
if (response.ok) {
|
344 |
let resultHTML = `
|
345 |
<h3>Hasil Prediksi:</h3>
|
346 |
+
<p><strong>Predicted Class Index:</strong> ${data.predicted_class_index}</p>
|
347 |
<p><strong>Confidence:</strong> ${(data.confidence * 100).toFixed(2)}%</p>
|
348 |
+
|
349 |
+
<div class="model-info">
|
350 |
+
<strong>Model Info:</strong><br>
|
351 |
+
Output Shape: ${JSON.stringify(data.model_info.output_shape)}<br>
|
352 |
+
Number of Classes: ${data.model_info.num_classes}
|
353 |
+
</div>
|
354 |
+
|
355 |
+
<h4>Probabilitas per Class:</h4>
|
356 |
`;
|
357 |
|
358 |
+
data.probabilities.forEach((prob, index) => {
|
359 |
+
const percentage = (prob * 100).toFixed(4);
|
360 |
+
const isMax = index === data.predicted_class_index;
|
361 |
resultHTML += `
|
362 |
+
<div class="prob-item" style="${isMax ? 'background-color: #fff3cd; font-weight: bold;' : ''}">
|
363 |
+
<span>Class ${index}</span>
|
364 |
<span>${percentage}%</span>
|
365 |
</div>
|
366 |
`;
|
367 |
+
});
|
368 |
+
|
369 |
+
resultHTML += `
|
370 |
+
<h4>Raw Output (Logits):</h4>
|
371 |
+
<div class="raw-output">${JSON.stringify(data.raw_output, null, 2)}</div>
|
372 |
+
`;
|
373 |
|
374 |
showResult('success', resultHTML);
|
375 |
} else {
|
|
|
410 |
@app.get("/health")
|
411 |
def health_check():
|
412 |
"""Health check endpoint"""
|
413 |
+
global interpreter, tokenizer
|
414 |
|
415 |
+
if not all([interpreter, tokenizer]):
|
416 |
return {"status": "unhealthy", "message": "Model components not loaded"}
|
417 |
|
418 |
return {
|
419 |
"status": "healthy",
|
420 |
"message": "TFLite model is ready",
|
421 |
"model_info": {
|
422 |
+
"input_details": [
|
423 |
+
{
|
424 |
+
"name": detail.get('name', f'input_{i}'),
|
425 |
+
"shape": detail['shape'].tolist(),
|
426 |
+
"dtype": str(detail['dtype'])
|
427 |
+
} for i, detail in enumerate(input_details)
|
428 |
+
],
|
429 |
+
"output_details": [
|
430 |
+
{
|
431 |
+
"name": detail.get('name', f'output_{i}'),
|
432 |
+
"shape": detail['shape'].tolist(),
|
433 |
+
"dtype": str(detail['dtype'])
|
434 |
+
} for i, detail in enumerate(output_details)
|
435 |
+
],
|
436 |
"max_length": MAX_LENGTH
|
437 |
}
|
438 |
}
|
|
|
449 |
# Lakukan prediksi
|
450 |
result = predict_tflite(input.text)
|
451 |
|
452 |
+
return PredictionResponse(**result)
|
|
|
|
|
|
|
|
|
453 |
|
454 |
except HTTPException:
|
455 |
raise
|
|
|
463 |
return {
|
464 |
"message": "TFLite API is working!",
|
465 |
"status": "ok",
|
466 |
+
"version": "raw_output",
|
467 |
"endpoints": {
|
468 |
"ui": "/",
|
469 |
"predict": "/predict",
|