File size: 15,547 Bytes
eb57aa1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
import pickle
import math
import os
from .normalizer import Normalizer
from .tokenizer import Tokenizer
from .data_helper import DataHelper
class SpellCheck:
def __init__(self):
self.normalizer = Normalizer()
self.tokenizer = Tokenizer()
self.data_helper = DataHelper()
self.dir_path = os.path.dirname(os.path.realpath(__file__)) + "/"
self.bigram_lm = self.data_helper.load_var(self.dir_path + "resource/spell/mybigram_lm.pckl")
self.onegram_lm = self.data_helper.load_var(self.dir_path + "resource/spell/onegram.pckl")
self.ingroup_chars = [{'ا', 'آ', 'ع'},
{'ت', 'ط'},
{'ث', 'س', 'ص'},
{'ح', 'ه'},
{'ذ', 'ز', 'ض', 'ظ'},
{'ق', 'غ'}]
def deletion(self, word):
p_list = []
for k in range(len(word)):
if word[k] == '-' or word[k] == '#':
continue
begin = word[:k]
end = word[k+1:]
tmp_string = begin + end
p_list.append(tmp_string)
return p_list
def splitting(self, word):
p_list = set([])
delimator = '-'
for i, char in enumerate(word):
begin = word[:i].strip('\u200c')
end = word[i:].strip('\u200c')
tmp_string = begin + delimator + end
p_list.add(tmp_string)
return list(p_list)
def insertion(self, word):
p_list = []
alphabet = ['ا', 'آ', 'ب', 'پ', 'ت', 'ث', 'ج', 'چ', 'ح', 'خ',
'د', 'ذ', 'ر', 'ز', 'ژ', 'س', 'ش', 'ص', 'ض', 'ط',
'ظ', 'ع', 'غ', 'ف', 'ق', 'ک', 'گ', 'ل', 'م', 'ن',
'و', 'ه', 'ی', '']
for k in range(len(word)+1):
for char in alphabet:
begin = word[:k]
end = word[k:]
tmp_string = begin + char + end
p_list.append(tmp_string)
return p_list
def substitution(self, word):
p_list = []
alphabet = ['ا', 'آ', 'ب', 'پ', 'ت', 'ث', 'ج', 'چ', 'ح', 'خ',
'د', 'ذ', 'ر', 'ز', 'ژ', 'س', 'ش', 'ص', 'ض', 'ط',
'ظ', 'ع', 'غ', 'ف', 'ق', 'ک', 'گ', 'ل', 'م', 'ن',
'و', 'ه', 'ی']
for i, char in enumerate(word):
if char == '-' or char == '#':
continue
for c in alphabet:
begin = word[:i]
end = word[i+1:]
tmp_string = begin + c + end
p_list.append(tmp_string)
return p_list
def transposition(self, word):
p_list = []
word = list(word)
tmp_word = word[:]
for k1 in range(len(word)):
k2 = k1 + 1
if k2 == len(word):
break
tmp = tmp_word[k1]
tmp_word[k1] = tmp_word[k2]
tmp_word[k2] = tmp
tmp_string = ''.join(tmp_word)
p_list.append(tmp_string)
tmp_word = word[:]
return p_list
def build_similar_words(self, word_seq, index, zi, operation):
z_list = []
o_list = []
if operation == "Spell":
tmp = self.deletion(zi)
for i in tmp:
z_list.append(i)
o_list.append("Deletion")
tmp = self.insertion(zi)
for i in tmp:
z_list.append(i)
o_list.append("Insertion")
tmp = self.substitution(zi)
for i in tmp:
z_list.append(i)
o_list.append("Substitution")
tmp = self.transposition(zi)
for i in tmp:
z_list.append(i)
o_list.append("Transposition")
elif operation == "Split":
tmp = self.splitting(zi)
for i in tmp:
z_list.append(i)
o_list.append("Split")
elif operation == "Merg":
if index < len(word_seq)-1:
tmp = zi + '#' + word_seq[index+1]
z_list.append(tmp)
o_list.append("Merg")
return [z_list, o_list]
def bigram_markov_factor(self, yi_1, yi):
bigram_counts, total_count = self.bigram_lm
tmp = (yi_1, yi)
if tmp in bigram_counts.keys():
x = bigram_counts[tmp]
x = float(x)/total_count
x = math.log2(x)
return x
else:
return -28
def get_word_probability(self, word):
lex_dict = self.onegram_lm[0]
total_words = self.onegram_lm[1]
if word in lex_dict:
count = lex_dict[word]
logprob = math.log2(float(count)/total_words)
return logprob
else:
return -50.0
def isword(self, x):
if abs(x.find('#') - x.find('-')) == 1:
return False
dash_idx = x.find('-')
if dash_idx != -1:
first = x[:dash_idx] # from beginning to n (n not included)
secound = x[dash_idx+1:] # n+1 through end of string
if self.get_word_probability(first) < -49:
return False
elif self.get_word_probability(secound) < -49:
return False
else:
return True
sharp_idx = x.find('#')
if sharp_idx != -1:
begin = x[:sharp_idx]
end = x[sharp_idx+1:]
tmp_str = begin + end
if self.get_word_probability(tmp_str) < -49:
return False
else:
return True
else:
if self.get_word_probability(x) < -49:
return False
else:
return True
def get_possible_words(self, word_seq, index):
wi = word_seq[index]
possible_words = []
operation_list = []
possible_words.append(wi)
operation_list.append("Nothing")
if len(wi) == 1:
return possible_words, operation_list
'''Merg Split Spell'''
[c_list, o_list] = self.build_similar_words(word_seq, index, wi, "Merg")
for i, c in enumerate(c_list):
if self.isword(c):
possible_words.append(c)
operation_list.append(o_list[i])
[c_list, o_list] = self.build_similar_words(word_seq, index, wi, "Split")
for i, c in enumerate(c_list):
if self.isword(c):
possible_words.append(c)
operation_list.append(o_list[i])
[c_list, o_list] = self.build_similar_words(word_seq, index, wi, "Spell")
for i, c in enumerate(c_list):
if self.isword(c):
possible_words.append(c)
operation_list.append(o_list[i])
return possible_words, operation_list
def select_n_best(self, c_list, o_list, n=3):
my_dict = {}
map_dict = {}
for i, word in enumerate(c_list):
if o_list[i] == 'Merg':
tmp_word = word.replace("#", "")
prob = self.get_word_probability(tmp_word)
elif o_list[i] == 'Split':
begin = word.split('-')[0]
end = word.split('-')[1]
prob = float(self.get_word_probability(begin) + self.get_word_probability(end))/2
else:
prob = self.get_word_probability(word)
if word not in my_dict:
my_dict[word] = prob
map_dict[word] = o_list[i]
n_best = set(sorted(my_dict, key=my_dict.get, reverse=True)[:n])
n_best.add(c_list[0])
n_best = list(n_best)
n_best_op = [map_dict[key] for key in n_best]
return n_best, n_best_op
def is_ingroup_substitution(self, main_word, candidate_word):
main_word = list(main_word)
candidate_word = list(candidate_word)
flag = False
for i, c in enumerate(main_word):
if c == candidate_word[i]:
continue
else:
flag = False
for l in self.ingroup_chars:
if c in l and candidate_word[i] in l:
flag = True
break
break
return flag
def select_correct_spell(self, candidate_list, next_candidates, next_next_candidates, prev_word, current_word):
best_candidate = None
best_operation = None
best_score = -1000
next_next_candidate_list = []
next_next_operation_list = []
candidate_list, operation_list = candidate_list
if next_candidates is not None:
next_candidate_list, next_operation_list = next_candidates
else:
next_candidate_list, next_operation_list = [None], "Nothing"
if next_next_candidates is not None:
next_next_candidate_list, next_next_operation_list = next_next_candidates
else:
next_candidate_list, next_operation_list = [None], "Nothing"
for i, candidate in enumerate(candidate_list):
operation = operation_list[i]
if operation == "Split":
begin = candidate[:candidate.find('-')]
end = candidate[candidate.find('-')+1:]
candidate = begin
next_word = end
onegram_score = self.get_word_probability(candidate)
bigram_score_with_prev = self.bigram_markov_factor(prev_word, candidate)
bigram_score_next = -1000
tmp_score_next = self.bigram_markov_factor(candidate, next_word)
for j, next_next_word in enumerate(next_candidate_list):
opt = next_operation_list[j]
if opt == 'Merg':
next_next_word = next_next_word.replace("#", "")
elif opt == 'Split':
next_next_word = next_next_word.split('-')[0]
tmp_score_next_next = self.bigram_markov_factor(next_word, next_next_word)
if tmp_score_next_next > bigram_score_next:
bigram_score_next = tmp_score_next_next
bigram_score_next = float(bigram_score_next + tmp_score_next)/2
elif operation == "Merg":
begin = candidate[:candidate.find('#')]
end = candidate[candidate.find('#')+1:]
candidate = begin + end
onegram_score = self.get_word_probability(candidate)
bigram_score_with_prev = self.bigram_markov_factor(prev_word, candidate)
bigram_score_next = -1000
for j, next_next_word in enumerate(next_next_candidate_list):
opt = next_next_operation_list[j]
if opt == 'Merg':
next_next_word = next_next_word.replace("#", "")
elif opt == 'Split':
next_next_word = next_next_word.split('-')[0]
tmp_score = self.bigram_markov_factor(candidate, next_next_word)
if tmp_score > bigram_score_next:
bigram_score_next = tmp_score
else:
onegram_score = self.get_word_probability(candidate)
bigram_score_with_prev = self.bigram_markov_factor(prev_word, candidate)
bigram_score_next = -1000
for j, next_word in enumerate(next_candidate_list):
opt = next_operation_list[j]
if opt == 'Merg':
next_word = next_word.replace("#", "")
elif opt == 'Split':
next_word = next_word.split('-')[0]
tmp_score = self.bigram_markov_factor(candidate, next_word)
if tmp_score > bigram_score_next:
bigram_score_next = tmp_score
if operation == 'Substitution':
if self.is_ingroup_substitution(current_word, candidate):
onegram_score += 20
else:
onegram_score += 10
elif operation == 'Deletion' or operation == 'Insertion':
onegram_score += 5
if '\u200c' in candidate and '\u200c' not in current_word:
onegram_score += 5
elif operation == 'Split' or operation == 'Merg':
onegram_score += 7
elif operation == 'Nothing':
onegram_score += 20
score = 1*onegram_score + 0.7*bigram_score_with_prev + 0.7*bigram_score_next
if score > best_score:
best_operation = operation
best_candidate = candidate_list[i]
best_score = score
return best_candidate, best_operation
def spell_corrector(self, doc_string):
words = self.tokenizer.tokenize_words(self.normalizer.normalize(doc_string))
best_o_list = []
best_candidates_list = []
yi_1 = None
merged_before = False
suggest_list = []
for i, word in enumerate(words):
[c_list, o_list] = self.get_possible_words(words, i)
n_best = self.select_n_best(c_list, o_list, n=15)
suggest_list.append(n_best)
for i, candidate_list in enumerate(suggest_list):
if merged_before:
continue
if (i+2) < len(suggest_list):
next_candidates = suggest_list[i+1]
next_next_candidates = suggest_list[i+2]
elif (i+1) < len(suggest_list):
next_candidates = suggest_list[i+1]
next_next_candidates = None
else:
next_candidates = None
next_next_candidates = None
best_candidate, best_operation = self.select_correct_spell(candidate_list, next_candidates,
next_next_candidates, yi_1, words[i])
merged_before = False
if best_operation == "Split":
begin = best_candidate.split('-')[0]
end = best_candidate.split('-')[1]
best_candidate = [begin, end]
if best_operation == "Merg":
best_candidate = best_operation.replace("#", "")
merged_before = True
if type(best_candidate) == str:
best_candidate = [best_candidate]
best_o_list.append(best_operation)
best_candidates_list.extend(best_candidate)
yi_1 = best_candidate[-1]
res = " ".join(best_candidates_list)
ops = " ".join(best_o_list)
return res
if __name__ == "__main__":
doc_string = "نمازگذاران وارد مسلی شدند."
myspell_checker = SpellCheck()
res = myspell_checker.spell_corrector(doc_string)
print(res)
|