Spaces:
Runtime error
Runtime error
import pandas as pd | |
import copy | |
import os | |
import gradio as gr | |
from collections import Counter | |
import random | |
import re | |
from datetime import date | |
from websockets import asyncio | |
import supabase | |
import json | |
###### OG FUNCTIONS TO GENERATE SCHEDULES ###### | |
# CONSTANTS | |
NAME_COL = 'Juggler_Name' | |
NUM_WORKSHOPS_COL = 'Num_Workshops' | |
AVAIL_COL = 'Availability' | |
DESCRIP_COL = 'Workshop_Descriptions' | |
DELIMITER = ';' | |
class Schedule: | |
def __init__(self, timeslots: dict): | |
self.num_timeslots_filled = 0 | |
self.total_num_workshops = 0 | |
for time,instructors in timeslots.items(): | |
curr_len = len(instructors) | |
if curr_len > 0: | |
self.num_timeslots_filled += 1 | |
self.total_num_workshops += curr_len | |
self.timeslots = timeslots | |
def add(self, person: str, time: str): | |
self.total_num_workshops += 1 | |
if len(self.timeslots[time]) == 0: | |
self.num_timeslots_filled += 1 | |
self.timeslots[time].append(person) | |
def remove(self, person: str, time: str): | |
self.total_num_workshops -= 1 | |
if len(self.timeslots[time]) == 1: | |
self.num_timeslots_filled -= 1 | |
self.timeslots[time].remove(person) | |
def print(self): | |
print(f"# timeslots filled: {self.num_timeslots_filled}") | |
print(f"# workshops: {self.total_num_workshops}") | |
for time,instructors in self.timeslots.items(): | |
print(f"{time}: {', '.join(instructors)}") | |
# Returns True if the person can teach during the slot, and False otherwise | |
def can_teach(person: str, slot: list, capacity: int) -> bool: | |
if len(slot) == capacity or len(slot) > capacity: | |
return False | |
# No one can teach two workshops at once | |
if person in slot: | |
return False | |
return True | |
# Extracts relevant information from the df with availability and puts it into a useable format | |
def convert_df(df, num_timeslots: int): | |
# Key: person's name | |
# Value: a list of their availability | |
availability = {} | |
# Key: person's name | |
# Value: how many workshops they want to teach | |
pref_dict = {} | |
# Instructors who can teach anytime | |
completely_available = [] | |
for row in range(len(df)): | |
name = df.loc[row, NAME_COL] | |
curr_avail = df.loc[row, AVAIL_COL] | |
curr_avail = curr_avail.split(DELIMITER) | |
if len(curr_avail) == num_timeslots: | |
completely_available.append(name) | |
else: | |
curr_avail = [elem.strip() for elem in curr_avail] | |
availability[name] = curr_avail | |
pref_dict[name] = df.loc[row, NUM_WORKSHOPS_COL] | |
# Sorts a dictionary by length of the values such that the | |
# key associated with the shortest value is first in the list {orders} | |
order = sorted(availability, key=lambda k: len(availability[k])) | |
# The idea is start with people who are the LEAST available to teach, | |
# then put the more available instructors into the available slots | |
new_avail_dict = {} | |
for instructor in order: | |
new_avail_dict[instructor] = availability[instructor] | |
# Sorts the dict such that people who want to teach less are first in the dict | |
pref_dict = {k: v for k, v in sorted(pref_dict.items(), key=lambda item: item[1])} | |
people = [] | |
for name,number in pref_dict.items(): | |
if number == 1: | |
people.append(name) | |
# Add people who are teaching multiple workshops to the list more than once | |
else: | |
for i in range(number): | |
people.append(name) | |
return {'people': people, 'availability': new_avail_dict, 'completely_available': completely_available} | |
# Makes a dictionary where each key is a timeslot and each value is a list. | |
# If there's no partial schedule, each list will be empty. | |
# If there's a partial schedule, each list will include the people teaching during that slot. | |
def initialize_timeslots(df) -> dict: | |
all_timeslots = set() | |
availability = df[AVAIL_COL] | |
for elem in availability: | |
curr_list = elem.split(DELIMITER) | |
for inner in curr_list: | |
all_timeslots.add(inner.strip()) | |
to_return = {} | |
for slot in all_timeslots: | |
to_return[slot] = [] | |
return to_return | |
# Recursive function that generates all possible schedules | |
def find_all_schedules(people: list, availability: dict, schedule_obj: Schedule, capacity: int, schedules: list, max_timeslots_list: list, max_workshops_list: list) -> None: | |
if schedule_obj.num_timeslots_filled > max_timeslots_list[0] or schedule_obj.num_timeslots_filled == max_timeslots_list[0]: | |
schedules.append(copy.deepcopy(schedule_obj)) | |
max_timeslots_list[0] = schedule_obj.num_timeslots_filled | |
# Keep track of total number of workshops taught | |
if schedule_obj.total_num_workshops > max_workshops_list[0] or schedule_obj.total_num_workshops == max_workshops_list[0]: | |
max_workshops_list[0] = schedule_obj.total_num_workshops | |
# Base case | |
if len(people) == 0: | |
return | |
# Recursive cases | |
person = people[0] | |
for time in availability[person]: | |
if can_teach(person, schedule_obj.timeslots[time], capacity): | |
# Choose (put that person in that timeslot) | |
schedule_obj.add(person, time) | |
# Explore (assign everyone else to timeslots based on that decision) | |
if len(people) == 1: | |
find_all_schedules([], availability, schedule_obj, capacity, schedules, max_timeslots_list, max_workshops_list) | |
else: | |
find_all_schedules(people[1:len(people)], availability, schedule_obj, capacity, schedules, max_timeslots_list, max_workshops_list) | |
# Unchoose (remove that person from the timeslot) | |
schedule_obj.remove(person, time) | |
# NOTE: this will not generate a full timeslot, but could still lead to a good schedule | |
else: | |
if len(people) == 1: | |
find_all_schedules([], availability, schedule_obj, capacity, schedules, max_timeslots_list, max_workshops_list) | |
else: | |
find_all_schedules(people[1:len(people)], availability, schedule_obj, capacity, schedules, max_timeslots_list, max_workshops_list) | |
return | |
# Puts the schedule in the correct order | |
def my_sort(curr_sched: dict, og_slots: list): | |
# example {'4 pm': ['logan', 'andrew'], '1 pm': ['graham', 'joyce'], '3 pm': ['logan', 'dan'], '2 pm': ['graham', 'dan']} | |
to_return = {} | |
for elem in og_slots: | |
if elem in curr_sched: | |
to_return[elem] = curr_sched[elem] | |
else: | |
to_return[elem] = [] | |
return to_return | |
# Makes an organized DataFrame given a list of schedules | |
def make_df(schedules: list, descrip_dict: dict, og_slots: list): | |
all_times = [] | |
all_instructors = [] | |
count = 1 | |
for i in range (len(schedules)): | |
curr_sched = schedules[i] | |
#sorted_dict = dict(sorted(curr_sched.items(), key=lambda item: item[0])) | |
sorted_dict = my_sort(curr_sched, og_slots) | |
curr_times = sorted_dict.keys() | |
curr_instructors = sorted_dict.values() | |
# Include an empty row between schedules | |
if count != 1: | |
all_times.append("") | |
all_instructors.append("") | |
if len(schedules) > 1 or len(schedules) == 1: | |
all_times.append(f"Schedule #{count}") | |
all_instructors.append("") | |
count += 1 | |
for slot in curr_times: | |
all_times.append(slot) | |
for instructors in curr_instructors: | |
if len(descrip_dict) == 0: | |
all_instructors.append("; ". join(instructors)) | |
if len(descrip_dict) > 0: | |
big_str = "" | |
for person in instructors: | |
if person in descrip_dict: | |
descrip = descrip_dict[person] | |
else: | |
descrip = "Workshop" | |
# {descrip} is a list bc they want to teach multiple workshops | |
if '\n' in descrip: | |
new_str = f"\n\n- {person}:\n{descrip}" | |
else: | |
new_str = f"\n\n- {person}: {descrip}" | |
big_str += new_str | |
all_instructors.append(big_str.strip()) | |
if len(curr_instructors) == 0: | |
all_instructors.append('N/A') | |
new_df = pd.DataFrame({ | |
"Schedule": all_times, | |
"Instructor(s)": all_instructors | |
}) | |
new_df['Instructor(s)'] = new_df['Instructor(s)'].astype(str) | |
return new_df, count - 1 | |
# Makes a dictionary where each key is the instructor's name and | |
# the value is the workshop(s) they're teaching | |
def get_description_dict(df): | |
new_dict = {} | |
for row in range(len(df)): | |
name = df.loc[row, NAME_COL] | |
new_dict[name] = df.loc[row, DESCRIP_COL] | |
return new_dict | |
# Classifies schedules into two categories: complete and incomplete: | |
# Complete = everyone is teaching desired number of timeslots and each timeslot has at least one workshop | |
# NOTE: I'm using "valid" instead of "complete" as a variable name so that I don't mix it up | |
# Incomplete = not complete | |
def classify_schedules(people: list, schedules: list, partial_names: list, total_timeslots: int, max_timeslots_filled: int) -> tuple: | |
valid_schedules = [] | |
# Key: score | |
# Value: schedules with that score | |
incomplete_schedules = {} | |
# Get frequency of items in the list | |
# Key: person | |
# Value: number of workshops they WANT to teach | |
pref_dict = Counter(people) | |
pref_dict.update(Counter(partial_names)) | |
all_names = pref_dict.keys() | |
## Evaluate each schedule ## | |
overall_max = 0 # changes throughout the function | |
for sched in schedules: | |
if sched.num_timeslots_filled != max_timeslots_filled: | |
continue | |
# Key: person | |
# Value: how many workshops they're ACTUALLY teaching in this schedule | |
freq_dict = {} | |
for name in all_names: | |
freq_dict[name] = 0 | |
for timeslot, instructor_list in sched.timeslots.items(): | |
for instructor in instructor_list: | |
if instructor in freq_dict: | |
freq_dict[instructor] += 1 | |
else: | |
print("there is a serious issue!!!!") | |
# See if everyone is teaching their desired number of workshops | |
everyone_is_teaching = True | |
for teacher, freq in freq_dict.items(): | |
if freq != pref_dict[teacher]: | |
#print(f"teacher: {teacher}. preference: {pref_dict[teacher]}. actual frequency: {freq}") | |
everyone_is_teaching = False | |
break | |
filled_all_timeslots = (sched.num_timeslots_filled == total_timeslots) | |
if everyone_is_teaching and filled_all_timeslots: | |
valid_schedules.append(sched) | |
else: | |
# No need to add to incomplete_schedules if there's at least one valid schedule | |
if len(valid_schedules) > 0: | |
continue | |
#print(f"teaching desired number of timeslots: {everyone_is_teaching}. At least one workshop per slot: {filled_all_timeslots}.\n{sched}\n") | |
if sched.num_timeslots_filled > overall_max or sched.num_timeslots_filled == overall_max: | |
overall_max = sched.num_timeslots_filled | |
if sched.num_timeslots_filled not in incomplete_schedules: | |
incomplete_schedules[sched.num_timeslots_filled] = [] | |
incomplete_schedules[sched.num_timeslots_filled].append(sched) | |
if len(valid_schedules) > 0: | |
return valid_schedules, [] | |
else: | |
return [], incomplete_schedules[overall_max] | |
# Parameters: schedules that have the max number of timeslots filled | |
# Max number of workshops taught in filled timeslots | |
# Returns: a list of all schedules that have the max number of workshops | |
# To make it less overwhelming, it will return {cutoff} randomly | |
def get_best_schedules(schedules: list, cutoff: str, max_workshops: int) -> list: | |
cutoff = int(cutoff) | |
seen = [] | |
best_schedules = [] | |
for sched in schedules: | |
if sched.total_num_workshops != max_workshops: | |
continue | |
if sched in seen: | |
continue | |
else: | |
seen.append(sched) | |
best_schedules.append(sched.timeslots) | |
if cutoff == -1: | |
return best_schedules | |
else: | |
if len(best_schedules) > cutoff: | |
# Sample without replacement | |
return random.sample(best_schedules, cutoff) | |
else: | |
return best_schedules | |
# Big wrapper function that calls the other functions | |
def main(df, capacity:int, num_results: int, og_slots: list): | |
descrip_dict = get_description_dict(df) | |
partial_names = [] | |
timeslots = initialize_timeslots(df) | |
total_timeslots = len(timeslots) | |
print(total_timeslots) | |
schedules = [] | |
schedule_obj = Schedule(timeslots) | |
# Convert the df with everyone's availability to a usable format | |
res = convert_df(df, total_timeslots) | |
people = res['people'] | |
availability = res['availability'] | |
completely_available = res['completely_available'] | |
print(', '.join(people)) | |
print(availability) | |
print(f"These instructors are completely avaialable: {', '.join(completely_available)}") | |
# Get the bare minimum of workshops that will be taught | |
distinct_slots = set() | |
for slots in availability.values(): | |
for elem in slots: | |
distinct_slots.add(elem) | |
num_distinct_slots = len(distinct_slots) | |
print(num_distinct_slots) | |
max_timeslots_list = [num_distinct_slots] | |
max_workshops_list = [num_distinct_slots] | |
find_all_schedules(people, availability, schedule_obj, capacity, schedules, max_timeslots_list, max_workshops_list) | |
res = classify_schedules(people, schedules, partial_names, total_timeslots, max_timeslots_list[0]) | |
valid_schedules = res[0] | |
decent_schedules = res[1] | |
# Return schedules | |
if len(valid_schedules) > 0: | |
best_schedules = get_best_schedules(valid_schedules, num_results, max_workshops_list[0]) | |
res = make_df(best_schedules, descrip_dict, og_slots) | |
new_df = res[0] | |
count = res[1] | |
if count == 1: | |
results = "Good news! I was able to make a complete schedule." | |
else: | |
results = "Good news! I was able to make multiple complete schedules." | |
else: | |
best_schedules = get_best_schedules(decent_schedules, num_results, max_workshops_list[0]) | |
res = make_df(best_schedules, descrip_dict, og_slots) | |
new_df = res[0] | |
count = res[1] | |
beginning = "Here" | |
if count == 1: | |
results = f"{beginning} is the best option." | |
else: | |
results = f"{beginning} are the best options." | |
directory = os.path.abspath(os.getcwd()) | |
path = directory + "/schedule.csv" | |
new_df.to_csv(path, index=False) | |
return results, new_df, path | |
##### ALL THE NEW STUFF WITH SUPABASE ETC. ##### | |
### CONSTANTS ### | |
NAME_COL = 'Juggler_Name' | |
NUM_WORKSHOPS_COL = 'Num_Workshops' | |
AVAIL_COL = 'Availability' | |
DESCRIP_COL = 'Workshop_Descriptions' | |
EMAIL_COL = 'Email' | |
DELIMITER = ';' | |
ALERT_TIME = None # leave warnings on screen indefinitely | |
FORM_NOT_FOUND = 'Form not found' | |
INCORRECT_PASSWORD = "The password is incorrect. Please check the password and try again. If you don't remember your password, please email jugglinggym@gmail.com." | |
NUM_ROWS = 1 | |
NUM_COLS_SCHEDULES = 2 | |
NUM_COLS_ALL_RESPONSES = 4 | |
NUM_RESULTS = 10 # randomly get {NUM_RESULTS} results | |
theme = gr.themes.Soft( | |
primary_hue="cyan", | |
secondary_hue="pink", | |
font=[gr.themes.GoogleFont('sans-serif'), 'ui-sans-serif', 'system-ui', 'Montserrat'], | |
) | |
### Connect to Supabase ### | |
# URL = os.environ['URL'] # TODO | |
URL = 'https://ubngctgvhjgxkvimdmri.supabase.co' | |
#API_KEY = os.environ['API_KEY'] | |
API_KEY = 'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6InVibmdjdGd2aGpneGt2aW1kbXJpIiwicm9sZSI6ImFub24iLCJpYXQiOjE3MzQ5MjAwOTQsImV4cCI6MjA1MDQ5NjA5NH0.NtGdfP8GYNuYdPdsaLW5GjgfB0_7Q1kNBIDJtPhO8nY' | |
client = supabase.create_client(URL, API_KEY) | |
### DEFINE FUNCTIONS ### | |
## Multi-purpose function ## | |
''' | |
Returns a lowercased and stripped version of the schedule name. | |
Returns: str | |
''' | |
def standardize(schedule_name: str): | |
return schedule_name.lower().strip() | |
## Functions to manage/generate schedules ## | |
''' | |
Uses the name and password to get the form. | |
Makes the buttons and other elements visible on the page. | |
Returns: | |
gr.Button: corresponds to find_form_btn | |
gr.Column: corresponds to all_responses_group | |
gr.Column: generate_schedules_explanation | |
gr.Row: corresponds to generate_btns | |
gr.Column: corresponds to open_close_btn_col | |
gr.Button: corresponds to open_close_btn | |
''' | |
def make_visible(schedule_name:str, password: str): | |
skip_output = gr.Button(), gr.Column(), gr.Column(), gr.Row(), gr.Column(), gr.Button() | |
if len(schedule_name) == 0: | |
gr.Warning('Please enter the form name.', ALERT_TIME) | |
return skip_output | |
if len(password) == 0: | |
gr.Warning('Please enter the password.', ALERT_TIME) | |
return skip_output | |
response = client.table('Forms').select('password', 'status').eq('form_name', standardize(schedule_name)).execute() | |
data = response.data | |
if len(data) > 0: | |
my_dict = data[0] | |
if password != my_dict['password']: | |
gr.Warning(INCORRECT_PASSWORD, ALERT_TIME) | |
return skip_output | |
else: | |
if my_dict['status'] == 'open': | |
gr.Info('', ALERT_TIME, title='Btw, the form is currently OPEN.') | |
return gr.Button(variant='secondary'), gr.Column(visible=True), gr.Column(visible=True), gr.Row(visible=True), gr.Column(visible=True), gr.Button("Close Form", visible=True) | |
elif my_dict['status'] == 'closed': | |
gr.Info('', ALERT_TIME, title='Btw, the form is currently CLOSED.') | |
return gr.Button(variant='secondary'), gr.Column(visible=True), gr.Column(visible=True), gr.Row(visible=True),gr.Column(visible=True), gr.Button("Open Form", visible=True) | |
else: | |
gr.Warning(f"There is no form called \"{schedule_name}\". Please check the spelling and try again.", ALERT_TIME) | |
return skip_output | |
''' | |
Makes a blank schedule that we can return to prevent things from breaking. | |
Returns: tuple with 3 elements: | |
0: str indicating that the form wasn't found | |
1: the DataFrame | |
2: the path to the DataFrame | |
''' | |
def make_blank_schedule(): | |
df = pd.DataFrame({ | |
'Schedule': [], | |
'Instructors': [] | |
}) | |
directory = os.path.abspath(os.getcwd()) | |
path = directory + "/schedule.csv" | |
df.to_csv(path, index=False) | |
return FORM_NOT_FOUND, df, path | |
''' | |
Gets a the form responses from Supabase and converts them to a DataFrame | |
Returns: | |
if found: a dictionary with three keys: capacity (int), df (DataFrame), and slots (list) | |
if not found: a string indicating the form was not found | |
''' | |
def get_df_from_db(schedule_name: str, password: str): | |
response = client.table('Forms').select('password', 'capacity', 'responses', 'slots').eq('form_name', standardize(schedule_name)).execute() | |
data = response.data | |
if len(data) > 0: | |
my_dict = data[0] | |
if password != my_dict['password']: | |
gr.Warning(INCORRECT_PASSWORD, ALERT_TIME) | |
return FORM_NOT_FOUND | |
# Convert to df | |
df = pd.DataFrame(json.loads(my_dict['responses'])) | |
return {'capacity': my_dict['capacity'], 'df': df, 'slots': my_dict['slots']} | |
else: | |
gr.Warning(f"There is no form called \"{schedule_name}\". Please check the spelling and try again.", ALERT_TIME) | |
return FORM_NOT_FOUND | |
''' | |
Puts all of the form responses into a DataFrame. | |
Returns this DF along with the filepath. | |
''' | |
def get_all_responses(schedule_name:str, password:str): | |
res = get_df_from_db(schedule_name, password) | |
if res == FORM_NOT_FOUND: | |
df = pd.DataFrame({ | |
NAME_COL: [], | |
EMAIL_COL: [], | |
NUM_WORKSHOPS_COL: [], | |
AVAIL_COL: [], | |
DESCRIP_COL: [] | |
}) | |
else: | |
df = res['df'] | |
df[AVAIL_COL] = [elem.replace(DELIMITER, f"{DELIMITER} ") for elem in df[AVAIL_COL].to_list()] | |
directory = os.path.abspath(os.getcwd()) | |
path = directory + "/all responses.csv" | |
df.to_csv(path, index=False) | |
if len(df) == 0: | |
gr.Warning('', ALERT_TIME, title='No one has filled out the form yet.') | |
return gr.DataFrame(df, visible=True), gr.File(path, visible=True) | |
''' | |
Calls the algorithm to generate the best possible schedules, | |
and returns a random subset of the results. | |
(The same as generate_schedules_wrapper_all_results, except that this function only returns a subset of them. | |
I had to make it into two separate functions in order to work with Gradio). | |
Returns: | |
DataFrame | |
Filepath to DF (str) | |
''' | |
def generate_schedules_wrapper_subset_results(schedule_name: str, password: str): | |
res = get_df_from_db(schedule_name, password) | |
# Return blank schedule (should be impossible to get to this condition btw) | |
if res == FORM_NOT_FOUND: | |
to_return = make_blank_schedule() | |
gr.Warning(FORM_NOT_FOUND, ALERT_TIME) | |
else: | |
df = res['df'] | |
if len(df) == 0: | |
gr.Warning('', ALERT_TIME, title='No one has filled out the form yet.') | |
to_return = make_blank_schedule() | |
else: | |
gr.Info('', ALERT_TIME, title='Working on generating schedules! Please DO NOT click anything on this page.') | |
to_return = main(df, res['capacity'], NUM_RESULTS, res['slots']) | |
gr.Info('', ALERT_TIME, title=to_return[0]) | |
return gr.Textbox(to_return[0]), gr.DataFrame(to_return[1], visible=True), gr.File(to_return[2], visible=True) | |
''' | |
Calls the algorithm to generate the best possible schedules, | |
and returns ALL of the results. | |
(The same as generate_schedules_wrapper_subset_results, except that this function returns all of them. | |
I had to make it into two separate functions in order to work with Gradio). | |
Returns: | |
DataFrame | |
Filepath to DF (str) | |
''' | |
def generate_schedules_wrapper_all_results(schedule_name: str, password: str): | |
res = get_df_from_db(schedule_name, password) | |
# Return blank schedule (should be impossible to get to this condition btw) | |
if res == FORM_NOT_FOUND: | |
to_return = make_blank_schedule() | |
gr.Warning(FORM_NOT_FOUND, ALERT_TIME) | |
else: | |
df = res['df'] | |
if len(df) == 0: | |
gr.Warning('', ALERT_TIME, title='No one has filled out the form yet.') | |
to_return = make_blank_schedule() | |
else: | |
gr.Info('', ALERT_TIME, title='Working on generating schedules! Please DO NOT click anything on this page.') | |
placeholder = -1 | |
to_return = main(df, res['capacity'], placeholder, res['slots']) | |
gr.Info('', ALERT_TIME, title=to_return[0]) | |
return gr.Textbox(to_return[0]), gr.DataFrame(to_return[1], visible=True), gr.File(to_return[2], visible=True) | |
''' | |
Opens/closes a form and changes the button after opening/closing the form. | |
Returns: gr.Button | |
''' | |
def toggle_btn(schedule_name:str, password:str): | |
response = client.table('Forms').select('password', 'capacity', 'status').eq('form_name', standardize(schedule_name)).execute() | |
data = response.data | |
if len(data) > 0: | |
my_dict = data[0] | |
if password != my_dict['password']: | |
gr.Warning(INCORRECT_PASSWORD, ALERT_TIME) | |
return FORM_NOT_FOUND | |
curr_status = my_dict['status'] | |
if curr_status == 'open': | |
client.table('Forms').update({'status': 'closed'}).eq('form_name', standardize(schedule_name)).execute() | |
gr.Info('', ALERT_TIME, title="The form was closed successfully!") | |
return gr.Button('Open Form') | |
elif curr_status == 'closed': | |
client.table('Forms').update({'status': 'open'}).eq('form_name', standardize(schedule_name)).execute() | |
gr.Info('', ALERT_TIME, title="The form was opened successfully!") | |
return gr.Button('Close Form') | |
else: | |
gr.Error('', ALERT_TIME, 'An unexpected error has ocurred.') | |
return gr.Button() | |
else: | |
gr.Warning('', ALERT_TIME, title=f"There was no form called \"{schedule_name}\". Please check the spelling and try again.") | |
return gr.Button() | |
### GRADIO ### | |
with gr.Blocks() as demo: | |
### VIEW FORM RESULTS ### | |
with gr.Tab('View Form Results'): | |
with gr.Column() as btn_group: | |
schedule_name = gr.Textbox(label="Form Name") | |
password = gr.Textbox(label="Password") | |
find_form_btn = gr.Button('Find Form', variant='primary') | |
# 1. Get all responses | |
with gr.Column(visible=False) as all_responses_col: | |
gr.Markdown('# Download All Form Responses') | |
gr.Markdown("Download everyone's responses to the form.") | |
all_responses_btn = gr.Button('Download All Form Responses', variant='primary') | |
with gr.Row() as all_responses_output_row: | |
df_out = gr.DataFrame(row_count = (NUM_ROWS, "dynamic"),col_count = (NUM_COLS_ALL_RESPONSES, "dynamic"),headers=[NAME_COL, NUM_WORKSHOPS_COL, AVAIL_COL, DESCRIP_COL],wrap=True,scale=4,visible=False) | |
file_out = gr.File(label = "Downloadable file", scale=1, visible=False) | |
all_responses_btn.click(fn=get_all_responses, inputs=[schedule_name, password], outputs=[df_out, file_out]) | |
# 2. Generate schedules | |
with gr.Column(visible=False) as generate_schedules_explanation_col: | |
gr.Markdown('# Create Schedules based on Everyone\'s Preferences.') | |
with gr.Row(visible=False) as generate_btns_row: | |
generate_ten_results_btn = gr.Button('Generate a Subset of Schedules', variant='primary', visible=True) | |
generate_all_results_btn = gr.Button('Generate All Possible Schedules', visible=True) | |
with gr.Row(visible=True) as generated_schedules_output: | |
text_out = gr.Textbox(label='Results') | |
generated_df_out = gr.DataFrame(row_count = (NUM_ROWS, "dynamic"),col_count = (NUM_COLS_SCHEDULES, "dynamic"),headers=["Schedule", "Instructors"],wrap=True,scale=3, visible=False) | |
generated_file_out = gr.File(label = "Downloadable schedule file", scale=1, visible=False) | |
generate_ten_results_btn.click(fn=generate_schedules_wrapper_subset_results, inputs=[schedule_name, password], outputs=[text_out, generated_df_out, generated_file_out], api_name='generate_random_schedules') | |
generate_all_results_btn.click(fn=generate_schedules_wrapper_all_results, inputs=[schedule_name, password], outputs=[text_out, generated_df_out, generated_file_out], api_name='generate_all_schedules') | |
# 3. Open/close button | |
with gr.Column(visible=False) as open_close_btn_col: | |
gr.Markdown('# Open or Close Form') | |
open_close_btn = gr.Button(variant='primary') | |
open_close_btn.click(fn=toggle_btn, inputs=[schedule_name, password], outputs=[open_close_btn]) | |
find_form_btn.click(fn=make_visible, inputs=[schedule_name, password], outputs=[find_form_btn, all_responses_col, generate_schedules_explanation_col, generate_btns_row, open_close_btn_col, open_close_btn]) | |
directory = os.path.abspath(os.getcwd()) | |
allowed = directory #+ "/schedules" | |
demo.launch(allowed_paths=[allowed], show_error=True) |