""" apply_nms.py: Wrapper for nms.py Authors : svp """ import numpy as np ''' nms.py: CPU implementation of non maximal supression modified from Ross's code. Authors : svp Modified from https://github.com/rbgirshick/fast-rcnn/blob/master/lib/utils/nms.py to accommodate a corner case which handles one box lying completely inside another. ''' def nms(dets, thresh): x1 = dets[:, 0] y1 = dets[:, 1] x2 = dets[:, 2] y2 = dets[:, 3] scores = dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h remove_index_1 = np.where(areas[i] == inter) remove_index_2 = np.where(areas[order[1:]] == inter) ovr = inter / (areas[i] + areas[order[1:]] - inter) ovr[remove_index_1] = 1.0 ovr[remove_index_2] = 1.0 inds = np.where(ovr <= thresh)[0] order = order[inds + 1] return keep ''' Extracts confidence map and box map from N (N=4 here) channel input. Parameters: ----------- confidence_map - (list) list of confidences for N channels hmap - (list) list of box values for N channels Returns ------- nms_conf_map - (HXW) single channel confidence score map nms_conf_box - (HXW) single channel box map. ''' def extract_conf_points(confidence_map, hmap): nms_conf_map = np.zeros_like(confidence_map[0]) nms_conf_box = np.zeros_like(confidence_map[0]) idx_1 = np.where(np.logical_and(confidence_map[0] > 0, confidence_map[1] <= 0)) idx_2 = np.where(np.logical_and(confidence_map[0] <= 0, confidence_map[1] > 0)) idx_common = np.where(np.logical_and(confidence_map[0] > 0, confidence_map[1] > 0)) nms_conf_map[idx_1] = confidence_map[0][idx_1] nms_conf_map[idx_2] = confidence_map[1][idx_2] nms_conf_box[idx_1] = hmap[0][idx_1] nms_conf_box[idx_2] = hmap[1][idx_2] for ii in range(len(idx_common[0])): x, y = idx_common[0][ii], idx_common[1][ii] if confidence_map[0][x, y] > confidence_map[1][x, y]: nms_conf_map[x, y] = confidence_map[0][x, y] nms_conf_box[x, y] = hmap[0][x, y] else: nms_conf_map[x, y] = confidence_map[1][x, y] nms_conf_box[x, y] = hmap[1][x, y] assert (np.sum(nms_conf_map > 0) == len(idx_1[0]) + len(idx_2[0]) + len(idx_common[0])) return nms_conf_map, nms_conf_box ''' Wrapper function to perform NMS Parameters: ----------- confidence_map - (list) list of confidences for N channels hmap - (list) list of box values for N channels wmap - (list) list of box values for N channels dotmap_pred_downscale -(int) prediction scale thresh - (float) Threshold for NMS. Returns ------- x, y - (list) list of x-coordinates and y-coordinates to keep after NMS. h, w - (list) list of height and width of the corresponding x, y points. scores - (list) list of confidence for h and w at (x, y) point. ''' def apply_nms(confidence_map, hmap, wmap, dotmap_pred_downscale=2, thresh=0.3): nms_conf_map, nms_conf_box = extract_conf_points([confidence_map[0], confidence_map[1]], [hmap[0], hmap[1]]) nms_conf_map, nms_conf_box = extract_conf_points([confidence_map[2], nms_conf_map], [hmap[2], nms_conf_box]) nms_conf_map, nms_conf_box = extract_conf_points([confidence_map[3], nms_conf_map], [hmap[3], nms_conf_box]) confidence_map = nms_conf_map hmap = nms_conf_box wmap = nms_conf_box confidence_map = np.squeeze(confidence_map) hmap = np.squeeze(hmap) wmap = np.squeeze(wmap) dets_idx = np.where(confidence_map > 0) y, x = dets_idx[-2], dets_idx[-1] h, w = hmap[dets_idx], wmap[dets_idx] x1 = x - w / 2 x2 = x + w / 2 y1 = y - h / 2 y2 = y + h / 2 scores = confidence_map[dets_idx] dets = np.stack([np.array(x1), np.array(y1), np.array(x2), np.array(y2), np.array(scores)], axis=1) # List of indices to keep keep = nms(dets, thresh) y, x = dets_idx[-2], dets_idx[-1] h, w = hmap[dets_idx], wmap[dets_idx] x = x[keep] y = y[keep] h = h[keep] w = w[keep] scores = scores[keep] return x, y, h, w, scores