aaappp7878's picture
Update app.py
0d119a8 verified
raw
history blame
6 kB
import gradio as gr
import torch
from PIL import Image
import numpy as np
import cv2
from transformers import AutoImageProcessor, AutoModelForImageClassification
# 加载多个检测模型
models = {
"model1": {
"name": "umm-maybe/AI-image-detector",
"processor": None,
"model": None,
"weight": 0.4
},
"model2": {
"name": "sayakpaul/convnext-base-finetuned-ai-generated-detection",
"processor": None,
"model": None,
"weight": 0.3
},
"model3": {
"name": "Xenova/clip-image-classification-ai-generated",
"processor": None,
"model": None,
"weight": 0.3
}
}
# 初始化模型
for key in models:
try:
models[key]["processor"] = AutoImageProcessor.from_pretrained(models[key]["name"])
models[key]["model"] = AutoModelForImageClassification.from_pretrained(models[key]["name"])
print(f"成功加载模型: {models[key]['name']}")
except Exception as e:
print(f"加载模型 {models[key]['name']} 失败: {str(e)}")
models[key]["processor"] = None
models[key]["model"] = None
def analyze_image_features(image):
# 转换为OpenCV格式
img_array = np.array(image)
if len(img_array.shape) == 3 and img_array.shape[2] == 3:
img_cv = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
else:
img_cv = img_array
features = {}
# 基本特征
features["width"] = image.width
features["height"] = image.height
features["aspect_ratio"] = image.width / max(1, image.height)
# 颜色分析
if len(img_array.shape) == 3:
features["avg_red"] = float(np.mean(img_array[:,:,0]))
features["avg_green"] = float(np.mean(img_array[:,:,1]))
features["avg_blue"] = float(np.mean(img_array[:,:,2]))
# 边缘一致性分析
edges = cv2.Canny(img_cv, 100, 200)
features["edge_density"] = float(np.sum(edges > 0) / (image.width * image.height))
# 纹理分析 - 使用灰度共生矩阵
if len(img_array.shape) == 3:
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
from skimage.feature import graycomatrix, graycoprops
# 计算GLCM
distances = [5]
angles = [0, np.pi/4, np.pi/2, 3*np.pi/4]
glcm = graycomatrix(gray, distances=distances, angles=angles, symmetric=True, normed=True)
# 计算GLCM属性
features["texture_contrast"] = float(np.mean(graycoprops(glcm, 'contrast')[0]))
features["texture_homogeneity"] = float(np.mean(graycoprops(glcm, 'homogeneity')[0]))
# 噪声分析
if len(img_array.shape) == 3:
blurred = cv2.GaussianBlur(img_cv, (5, 5), 0)
noise = cv2.absdiff(img_cv, blurred)
features["noise_level"] = float(np.mean(noise))
return features
def detect_ai_image(image):
if image is None:
return {"error": "未提供图像"}
results = {}
valid_models = 0
weighted_ai_probability = 0
# 使用每个模型进行预测
for key, model_info in models.items():
if model_info["processor"] is not None and model_info["model"] is not None:
try:
# 处理图像
inputs = model_info["processor"](images=image, return_tensors="pt")
with torch.no_grad():
outputs = model_info["model"](**inputs)
# 获取预测结果
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
# 获取概率
probabilities = torch.nn.functional.softmax(logits, dim=-1)
# 确定AI生成概率
ai_label_idx = None
for idx, label in model_info["model"].config.id2label.items():
if "ai" in label.lower() or "generated" in label.lower() or "fake" in label.lower():
ai_label_idx = idx
break
if ai_label_idx is None:
ai_label_idx = 1 # 默认索引1为AI生成
ai_probability = float(probabilities[0][ai_label_idx].item())
# 添加到结果
results[key] = {
"model_name": model_info["name"],
"ai_probability": ai_probability,
"predicted_class": model_info["model"].config.id2label[predicted_class_idx]
}
# 累加加权概率
weighted_ai_probability += ai_probability * model_info["weight"]
valid_models += 1
except Exception as e:
results[key] = {
"model_name": model_info["name"],
"error": str(e)
}
# 计算最终加权概率
final_ai_probability = weighted_ai_probability / max(sum(m["weight"] for k, m in models.items() if m["processor"] is not None), 1)
# 分析图像特征
image_features = analyze_image_features(image)
# 确定置信度级别
if final_ai_probability > 0.7:
confidence_level = "高概率AI生成"
elif final_ai_probability < 0.3:
confidence_level = "高概率人类创作"
else:
confidence_level = "无法确定"
# 构建最终结果
final_result = {
"ai_probability": final_ai_probability,
"confidence_level": confidence_level,
"individual_model_results": results,
"features": image_features
}
return final_result
# 创建Gradio界面
iface = gr.Interface(
fn=detect_ai_image,
inputs=gr.Image(type="pil"),
outputs=gr.JSON(),
title="增强型AI图像检测API",
description="多模型集成检测图像是否由AI生成",
examples=None,
allow_flagging="never"
)
iface.launch()