File size: 49,825 Bytes
4b6a001
 
 
e8ef8e8
443a961
 
 
1f1e15a
 
443a961
6e3ea05
443a961
 
1f1e15a
 
4b6a001
443a961
 
 
 
 
e8ef8e8
1f1e15a
 
 
 
443a961
1f1e15a
443a961
4b6a001
1f1e15a
 
443a961
 
 
1f1e15a
 
443a961
 
1f1e15a
443a961
1f1e15a
 
443a961
 
1f1e15a
443a961
1f1e15a
 
443a961
 
1f1e15a
443a961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2c6cf8
443a961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f1e15a
b7211f1
 
443a961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2c6cf8
443a961
d2c6cf8
 
 
443a961
1f1e15a
d2c6cf8
 
 
 
443a961
 
 
 
1f1e15a
443a961
1f1e15a
443a961
d2c6cf8
1f1e15a
 
443a961
 
 
 
 
 
 
 
 
1f1e15a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
443a961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f1e15a
 
 
 
443a961
1f1e15a
443a961
 
 
 
 
 
 
 
 
 
 
 
 
1f1e15a
443a961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f1e15a
 
 
 
 
 
 
 
 
 
 
 
443a961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e2e8cb
 
443a961
 
 
6e2e8cb
443a961
6e2e8cb
6e3ea05
443a961
6e3ea05
443a961
 
 
 
 
 
 
1f1e15a
 
 
 
443a961
 
 
 
 
 
 
 
 
 
 
 
0d119a8
443a961
0d119a8
443a961
 
 
 
 
 
 
 
 
 
 
 
 
0d119a8
443a961
 
6e3ea05
443a961
6e3ea05
443a961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e3ea05
443a961
6e3ea05
1f1e15a
 
 
443a961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f1e15a
 
 
 
 
 
 
 
 
 
 
 
443a961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f1e15a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
443a961
 
 
 
 
 
 
 
 
 
 
 
 
6e3ea05
443a961
 
 
 
 
 
 
 
 
d2c6cf8
 
 
443a961
d2c6cf8
 
 
443a961
d2c6cf8
 
 
443a961
d2c6cf8
 
443a961
6e2e8cb
443a961
 
6e3ea05
443a961
6e3ea05
 
 
 
1f1e15a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
443a961
b7211f1
443a961
4b6a001
b7211f1
1f1e15a
 
b7211f1
 
 
1f1e15a
 
b7211f1
 
 
1f1e15a
 
b7211f1
 
 
1f1e15a
 
b7211f1
 
 
1f1e15a
 
b7211f1
 
 
1f1e15a
 
b7211f1
 
 
1f1e15a
 
b7211f1
 
 
1f1e15a
 
b7211f1
 
 
1f1e15a
 
b7211f1
 
 
1f1e15a
 
b7211f1
 
 
1f1e15a
 
b7211f1
 
 
1f1e15a
 
b7211f1
 
 
1f1e15a
 
b7211f1
 
 
1f1e15a
 
b7211f1
 
 
1f1e15a
 
6e2e8cb
b7211f1
1f1e15a
b7211f1
 
 
 
 
 
 
 
 
 
 
 
 
 
443a961
0aa2abb
1f1e15a
 
 
 
 
 
 
 
9521c70
b7211f1
9521c70
 
 
1f1e15a
 
 
 
 
443a961
 
 
 
1f1e15a
 
 
 
443a961
 
1f1e15a
 
 
 
 
 
443a961
b7211f1
 
 
1f1e15a
 
 
 
 
443a961
b7211f1
 
 
1f1e15a
 
 
 
443a961
b7211f1
 
 
 
 
 
 
 
 
443a961
 
 
1f1e15a
443a961
1f1e15a
6e3ea05
9521c70
6e2e8cb
443a961
6e2e8cb
 
 
1f1e15a
 
 
443a961
6e2e8cb
1f1e15a
 
6e2e8cb
443a961
6e2e8cb
 
1f1e15a
 
6e2e8cb
443a961
6e2e8cb
 
1f1e15a
 
6e2e8cb
443a961
6e3ea05
1f1e15a
 
 
 
 
 
6e2e8cb
0aa2abb
d2c6cf8
443a961
d2c6cf8
 
 
1f1e15a
 
 
443a961
d2c6cf8
1f1e15a
 
d2c6cf8
 
6e3ea05
d2c6cf8
1f1e15a
 
d2c6cf8
 
 
 
1f1e15a
 
d2c6cf8
 
6e3ea05
1f1e15a
 
 
 
 
 
d2c6cf8
443a961
b7211f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f1e15a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2c6cf8
1f1e15a
 
 
b7211f1
1f1e15a
b7211f1
 
 
 
 
d2c6cf8
b7211f1
 
d2c6cf8
b7211f1
1f1e15a
 
b7211f1
d2c6cf8
142ac3f
 
 
b7211f1
443a961
1f1e15a
9521c70
aab031c
b7211f1
443a961
aab031c
1f1e15a
aab031c
 
d2c6cf8
1f1e15a
aab031c
 
b7211f1
 
 
1f1e15a
 
 
 
b7211f1
1f1e15a
aab031c
 
d2c6cf8
443a961
 
 
 
6e2e8cb
aab031c
b7211f1
e8ef8e8
b7211f1
e8ef8e8
 
 
443a961
1f1e15a
 
 
 
 
443a961
1f1e15a
 
 
 
 
 
 
 
 
 
 
 
 
 
e8ef8e8
 
 
 
443a961
 
 
 
 
b7211f1
 
 
443a961
 
 
 
 
e8ef8e8
 
071497b
443a961
 
 
 
071497b
 
0a4fcc5
1f1e15a
 
9521c70
1f1e15a
9521c70
6e2e8cb
 
b7211f1
 
2daec1f
b7211f1
 
aab031c
b7211f1
 
 
 
 
 
 
 
 
 
aab031c
b7211f1
 
 
 
 
 
aab031c
443a961
2daec1f
 
1f1e15a
aab031c
443a961
b7211f1
9521c70
e8ef8e8
 
443a961
 
e8ef8e8
1f1e15a
2daec1f
9521c70
d2c6cf8
6e2e8cb
b7211f1
 
1f1e15a
d2c6cf8
5195376
d2c6cf8
 
9521c70
6e2e8cb
443a961
e8ef8e8
443a961
1f1e15a
e8ef8e8
 
1f1e15a
 
 
 
 
 
 
443a961
0a4fcc5
5195376
1f1e15a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b6a001
1f1e15a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b6a001
443a961
1f1e15a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
import gradio as gr
import torch
import numpy as np
import cv2
from PIL import Image
import time
import os
import json
from datetime import datetime
from scipy import stats
from skimage.feature import graycomatrix, graycoprops, local_binary_pattern
from transformers import AutoImageProcessor, AutoModelForImageClassification
from functools import lru_cache
import pywt  # 用于小波变换
import uuid  # 用于生成唯一ID

# 设置缓存目录
os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers_cache"
os.environ["HF_HOME"] = "/tmp/hf_home"
os.makedirs("/tmp/transformers_cache", exist_ok=True)
os.makedirs("/tmp/hf_home", exist_ok=True)

# 创建反馈存储目录
FEEDBACK_DIR = "/tmp/feedback"
os.makedirs(FEEDBACK_DIR, exist_ok=True)

#############################################
# 模型管理部分 - 增强版
#############################################

class EnhancedModelManager:
    """Enhanced model manager with support for specialized AI detection models"""
    
    def __init__(self):
        self.models = {
            "ai_detector": {
                "name": "umm-maybe/AI-image-detector",  # 将来替换为CNNDetection
                "processor": None,
                "model": None,
                "weight": 0.6  # 增加专业AI检测模型权重
            },
            "general_classifier1": {
                "name": "microsoft/resnet-50",  # 将来替换为DFDC模型
                "processor": None,
                "model": None,
                "weight": 0.2  # 降低通用模型权重
            },
            "general_classifier2": {
                "name": "google/vit-base-patch16-224",  # 保留作为辅助模型
                "processor": None,
                "model": None,
                "weight": 0.2  # 降低通用模型权重
            }
        }
        self.loaded_models = set()
        
    def load_model(self, key):
        """Lazy load a specific model only when needed"""
        if key not in self.models:
            return False
            
        if key in self.loaded_models:
            return True
            
        try:
            model_info = self.models[key]
            model_info["processor"] = AutoImageProcessor.from_pretrained(
                model_info["name"],
                cache_dir="/tmp/transformers_cache"
            )
            
            # 加载模型
            model_info["model"] = AutoModelForImageClassification.from_pretrained(
                model_info["name"],
                cache_dir="/tmp/transformers_cache"
            )
                
            # 量化模型以减少内存使用并加速推理
            if torch.cuda.is_available():
                model_info["model"].to('cuda')
            else:
                # 尝试量化,如果失败则使用原始模型
                try:
                    model_info["model"] = torch.quantization.quantize_dynamic(
                        model_info["model"], {torch.nn.Linear}, dtype=torch.qint8
                    )
                except Exception as e:
                    print(f"量化失败,使用原始模型: {str(e)}")
            
            self.loaded_models.add(key)
            print(f"成功加载模型: {model_info['name']}")
            return True
        except Exception as e:
            print(f"加载模型失败 {self.models[key]['name']}: {str(e)}")
            return False
    
    def get_model_prediction(self, key, image):
        """Get prediction from a specific model"""
        if not self.load_model(key):
            return None
            
        model_info = self.models[key]
        
        try:
            # 处理图像
            inputs = model_info["processor"](images=image, return_tensors="pt")
            
            # 如果有GPU则使用
            if torch.cuda.is_available():
                inputs = {k: v.to('cuda') for k, v in inputs.items()}
            
            # 推理
            with torch.no_grad():
                outputs = model_info["model"](**inputs)
            
            # 获取概率
            probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
            
            # 处理输出
            ai_probability = self.process_model_output(model_info, outputs, probabilities)
            
            # 返回结果
            predicted_class_idx = outputs.logits.argmax(-1).item()
            return {
                "model_name": model_info["name"],
                "ai_probability": ai_probability,
                "predicted_class": model_info["model"].config.id2label[predicted_class_idx],
                "confidence": float(probabilities[0][predicted_class_idx].item()),
                "raw_probability": ai_probability  # 保存原始概率用于校准
            }
        
        except Exception as e:
            return {
                "model_name": model_info["name"],
                "error": str(e)
            }
    
    def process_model_output(self, model_info, outputs, probabilities):
        """Process different model outputs, return AI generation probability"""
        model_name = model_info["name"].lower()
        
        # 处理AI-image-detector模型
        if "ai-image-detector" in model_name:
            ai_label_idx = None
            human_label_idx = None
            
            for idx, label in model_info["model"].config.id2label.items():
                label_lower = label.lower()
                if "ai" in label_lower or "generated" in label_lower or "fake" in label_lower:
                    ai_label_idx = idx
                if "human" in label_lower or "real" in label_lower:
                    human_label_idx = idx
            
            if human_label_idx is not None:
                ai_probability = 1 - float(probabilities[0][human_label_idx].item())
            elif ai_label_idx is not None:
                ai_probability = float(probabilities[0][ai_label_idx].item())
            else:
                ai_probability = 0.5
                
            return ai_probability
        
        # 处理通用图像分类模型
        predicted_class_idx = outputs.logits.argmax(-1).item()
        predicted_class = model_info["model"].config.id2label[predicted_class_idx].lower()
        
        # 检查AI相关关键词
        ai_keywords = ["artificial", "generated", "synthetic", "fake", "computer", "digital", "cgi", "rendered"]
        for keyword in ai_keywords:
            if keyword in predicted_class:
                return float(probabilities[0][predicted_class_idx].item())
        
        # 默认处理
        if "ai" in predicted_class or "generated" in predicted_class or "fake" in predicted_class:
            return float(probabilities[0][predicted_class_idx].item())
        else:
            return 0.3  # 降低默认AI概率,更保守的判断
#############################################
# 特征提取部分 - 增强版
#############################################

class EnhancedFeatureExtractor:
    """Enhanced image feature extraction with advanced features"""
    
    def __init__(self):
        # 中间结果缓存
        self.cache = {}
        
    def clear_cache(self):
        """Clear the cache between images"""
        self.cache = {}
    
    def detect_image_type(self, image):
        """Detect the type of image (portrait, landscape, etc.)"""
        img_array = np.array(image)
        
        # 检测人脸
        try:
            face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
            if len(img_array.shape) == 3:
                gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
            else:
                gray = img_array
            faces = face_cascade.detectMultiScale(gray, 1.1, 4)
            
            if len(faces) > 0:
                return "portrait"
        except:
            pass
        
        # 检查是否为风景图 (简单启发式方法)
        if image.width > image.height * 1.5:
            return "landscape"
        
        # 默认类型
        return "general"
    
    @lru_cache(maxsize=8)
    def get_grayscale(self, image_id):
        """Get grayscale version of image with caching"""
        img_cv = self.cache.get('img_cv')
        if img_cv is None:
            return None
            
        if len(img_cv.shape) == 3:
            gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
        else:
            gray = img_cv
        return gray
    
    def analyze_image_features(self, image, downscale_factor=1.0):
        """Extract image features with optimizations"""
        # 转换为OpenCV格式
        img_array = np.array(image)
        if len(img_array.shape) == 3 and img_array.shape[2] == 3:
            img_cv = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
        else:
            img_cv = img_array
            
        # 存入缓存
        self.cache['img_cv'] = img_cv
        
        # 如果需要,对大图像进行降采样处理
        if downscale_factor < 1.0:
            h, w = img_cv.shape[:2]
            new_h, new_w = int(h * downscale_factor), int(w * downscale_factor)
            img_cv = cv2.resize(img_cv, (new_w, new_h))
            self.cache['img_cv'] = img_cv
        
        # 为图像创建唯一ID (用于lru_cache)
        image_id = id(image)
        self.cache['image_id'] = image_id
        
        # 检测图像类型
        image_type = self.detect_image_type(image)
        self.cache['image_type'] = image_type
        
        features = {}
        features["image_type"] = image_type
        
        # 基本特征
        features["width"] = image.width
        features["height"] = image.height
        features["aspect_ratio"] = image.width / max(1, image.height)
        
        # 并行提取不同组的特征
        self._extract_color_features(img_array, features)
        self._extract_edge_features(img_cv, features, image_id)
        self._extract_texture_features(img_cv, features, image_id)
        self._extract_noise_features(img_cv, features)
        self._extract_symmetry_features(img_cv, features)
        self._extract_frequency_features(img_cv, features, image_id)
        self._extract_advanced_features(img_cv, features, image_id)
        
        return features
    def _extract_color_features(self, img_array, features):
        """Extract color-related features"""
        if len(img_array.shape) == 3:
            # 使用向量化操作提高速度
            features["avg_red"] = float(np.mean(img_array[:,:,0]))
            features["avg_green"] = float(np.mean(img_array[:,:,1]))
            features["avg_blue"] = float(np.mean(img_array[:,:,2]))
            
            # 颜色标准差
            features["color_std"] = float(np.std([
                features["avg_red"], 
                features["avg_green"], 
                features["avg_blue"]
            ]))
            
            # 局部颜色变化 - 使用步进操作提高速度
            block_size = 10
            stride = 10
            h, w = img_array.shape[:2]
            
            # 使用数组切片加速处理
            blocks = []
            for i in range(0, h-block_size, stride):
                for j in range(0, w-block_size, stride):
                    blocks.append(img_array[i:i+block_size, j:j+block_size])
            
            if blocks:
                # 转换为numpy数组进行向量化操作
                blocks_array = np.array(blocks)
                std_values = np.std(blocks_array.reshape(len(blocks), -1), axis=1)
                features["local_color_variation"] = float(np.mean(std_values))
            
            # 颜色直方图和熵
            r_hist, _ = np.histogram(img_array[:,:,0].flatten(), bins=64, range=(0, 256))
            g_hist, _ = np.histogram(img_array[:,:,1].flatten(), bins=64, range=(0, 256))
            b_hist, _ = np.histogram(img_array[:,:,2].flatten(), bins=64, range=(0, 256))
            
            # 计算熵
            r_entropy = stats.entropy(r_hist + 1e-10)
            g_entropy = stats.entropy(g_hist + 1e-10)
            b_entropy = stats.entropy(b_hist + 1e-10)
            features["color_entropy"] = float((r_entropy + g_entropy + b_entropy) / 3)
            
            # 颜色一致性 - AI生成图像通常颜色过于一致
            color_blocks = []
            for i in range(0, h-block_size, stride):
                for j in range(0, w-block_size, stride):
                    block = img_array[i:i+block_size, j:j+block_size]
                    avg_color = np.mean(block, axis=(0,1))
                    color_blocks.append(avg_color)
            
            if color_blocks:
                color_blocks = np.array(color_blocks)
                features["color_consistency"] = float(1.0 - np.std(color_blocks) / 128.0)
    
    def _extract_edge_features(self, img_cv, features, image_id):
        """Extract edge-related features"""
        # 获取灰度图
        gray = self.get_grayscale(image_id)
        if gray is None:
            if len(img_cv.shape) == 3:
                gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
            else:
                gray = img_cv
            self.cache['gray'] = gray
        
        # 边缘检测
        edges = cv2.Canny(gray, 100, 200)
        self.cache['edges'] = edges
        features["edge_density"] = float(np.sum(edges > 0) / (img_cv.shape[0] * img_cv.shape[1]))
        
        # 边缘方向分析
        sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
        sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
        self.cache['sobelx'] = sobelx
        self.cache['sobely'] = sobely
        
        edge_magnitude = np.sqrt(sobelx**2 + sobely**2)
        self.cache['edge_magnitude'] = edge_magnitude
        features["edge_variance"] = float(np.var(edge_magnitude))
        
        # 边缘方向分布
        edge_direction = np.arctan2(sobely, sobelx) * 180 / np.pi
        self.cache['edge_direction'] = edge_direction
        
        # 只在显著边缘上计算以提高速度
        mask = edge_magnitude > 30
        if np.sum(mask) > 0:
            edge_dir_hist, _ = np.histogram(edge_direction[mask], bins=18, range=(-180, 180))
            features["edge_direction_entropy"] = float(stats.entropy(edge_dir_hist + 1e-10))
            
            # 边缘方向一致性 - AI生成图像通常边缘方向过于一致
            edge_dir_normalized = edge_dir_hist / np.sum(edge_dir_hist)
            features["edge_direction_consistency"] = float(np.max(edge_dir_normalized))
    def _extract_texture_features(self, img_cv, features, image_id):
        """Extract texture-related features"""
        # 获取灰度图
        gray = self.cache.get('gray')
        if gray is None:
            gray = self.get_grayscale(image_id)
            if gray is None:
                if len(img_cv.shape) == 3:
                    gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
                else:
                    gray = img_cv
                self.cache['gray'] = gray
        
        # 减少GLCM计算量,使用更少的角度和距离
        distances = [5]
        angles = [0, np.pi/2]  # 从4个角度减少到2个
        
        # 如果图像较大,对GLCM计算进行降采样
        h, w = gray.shape
        if h > 512 or w > 512:
            gray_small = cv2.resize(gray, (min(w, 512), min(h, 512)))
        else:
            gray_small = gray
            
        # 转换为uint8并缩放到0-255用于GLCM
        if gray_small.dtype != np.uint8:
            gray_small = ((gray_small - gray_small.min()) / 
                         (gray_small.max() - gray_small.min() + 1e-10) * 255).astype(np.uint8)
        
        # 使用更少的灰度级以加速计算
        gray_small = (gray_small // 8) * 8  # 减少到32个灰度级
        
        # 计算GLCM
        try:
            glcm = graycomatrix(gray_small, distances=distances, angles=angles, 
                               symmetric=True, normed=True)
            
            # 计算GLCM属性
            features["texture_contrast"] = float(np.mean(graycoprops(glcm, 'contrast')[0]))
            features["texture_homogeneity"] = float(np.mean(graycoprops(glcm, 'homogeneity')[0]))
            features["texture_correlation"] = float(np.mean(graycoprops(glcm, 'correlation')[0]))
            features["texture_energy"] = float(np.mean(graycoprops(glcm, 'energy')[0]))
        except Exception as e:
            print(f"GLCM计算错误: {e}")
        
        # LBP用于微观纹理分析 - 对AI检测至关重要
        try:
            # 使用更小的半径和更少的点以提高速度
            radius = 2  # 从3减少到2
            n_points = 8  # 从24减少到8
            
            # 如果需要,对LBP进行降采样
            if h > 512 or w > 512:
                if 'gray_small' not in locals():
                    gray_small = cv2.resize(gray, (min(w, 512), min(h, 512)))
            else:
                gray_small = gray
                
            lbp = local_binary_pattern(gray_small, n_points, radius, method='uniform')
            lbp_hist, _ = np.histogram(lbp, bins=n_points + 2, range=(0, n_points + 2))
            lbp_hist = lbp_hist.astype(float) / (sum(lbp_hist) + 1e-10)
            features["lbp_entropy"] = float(stats.entropy(lbp_hist + 1e-10))
            
            # LBP一致性 - AI生成图像通常LBP模式过于一致
            features["lbp_uniformity"] = float(np.sum(lbp_hist**2))
        except Exception as e:
            print(f"LBP计算错误: {e}")
    
    def _extract_noise_features(self, img_cv, features):
        """Extract noise-related features"""
        if len(img_cv.shape) == 3:
            # 使用更小的核以加速模糊
            blurred = cv2.GaussianBlur(img_cv, (3, 3), 0)
            noise = cv2.absdiff(img_cv, blurred)
            features["noise_level"] = float(np.mean(noise))
            features["noise_std"] = float(np.std(noise))
            
            # 噪声频谱分析 - 只使用一个通道以提高速度
            noise_fft = np.fft.fft2(noise[:,:,0])
            noise_fft_shift = np.fft.fftshift(noise_fft)
            noise_magnitude = np.abs(noise_fft_shift)
            features["noise_spectrum_std"] = float(np.std(noise_magnitude))
            
            # 噪声空间一致性 - 使用更大的块以提高速度
            block_size = 64  # 从32增加到64
            h, w = noise.shape[:2]
            
            # 使用步进操作
            noise_blocks = []
            for i in range(0, h-block_size, block_size):
                for j in range(0, w-block_size, block_size):
                    block = noise[i:i+block_size, j:j+block_size]
                    noise_blocks.append(np.mean(block))
                    
            if noise_blocks:
                features["noise_spatial_std"] = float(np.std(noise_blocks))
                
            # 噪声颜色通道相关性 - 真实照片的噪声在通道间相关性较低
            if len(img_cv.shape) == 3:
                noise_r = noise[:,:,0].flatten()
                noise_g = noise[:,:,1].flatten()
                noise_b = noise[:,:,2].flatten()
                
                corr_rg = np.corrcoef(noise_r, noise_g)[0,1]
                corr_rb = np.corrcoef(noise_r, noise_b)[0,1]
                corr_gb = np.corrcoef(noise_g, noise_b)[0,1]
                
                features["noise_channel_correlation"] = float((abs(corr_rg) + abs(corr_rb) + abs(corr_gb)) / 3)
    def _extract_symmetry_features(self, img_cv, features):
        """Extract symmetry-related features"""
        h, w = img_cv.shape[:2]
        
        # 水平对称性
        if w % 2 == 0:
            left_half = img_cv[:, :w//2]
            right_half = cv2.flip(img_cv[:, w//2:], 1)
            if left_half.shape == right_half.shape:
                # 对大图像使用采样以加速计算
                if h > 512 or w//2 > 512:
                    step = max(1, min(h, w//2) // 512)
                    diff = cv2.absdiff(left_half[::step, ::step], right_half[::step, ::step])
                else:
                    diff = cv2.absdiff(left_half, right_half)
                h_symmetry = 1 - float(np.mean(diff) / 255)
                features["horizontal_symmetry"] = h_symmetry
        
        # 垂直对称性
        if h % 2 == 0:
            top_half = img_cv[:h//2, :]
            bottom_half = cv2.flip(img_cv[h//2:, :], 0)
            if top_half.shape == bottom_half.shape:
                # 对大图像使用采样以加速计算
                if h//2 > 512 or w > 512:
                    step = max(1, min(h//2, w) // 512)
                    diff = cv2.absdiff(top_half[::step, ::step], bottom_half[::step, ::step])
                else:
                    diff = cv2.absdiff(top_half, bottom_half)
                v_symmetry = 1 - float(np.mean(diff) / 255)
                features["vertical_symmetry"] = v_symmetry
                
        # 径向对称性 - 对于人脸等中心对象很有用
        if min(h, w) > 100:  # 只对足够大的图像计算
            try:
                center_y, center_x = h // 2, w // 2
                max_radius = min(center_x, center_y) - 10
                
                if max_radius > 20:  # 确保有足够的半径
                    # 创建径向对称性掩码
                    y, x = np.ogrid[-center_y:h-center_y, -center_x:w-center_x]
                    mask = x*x + y*y <= max_radius*max_radius
                    
                    # 计算对称性
                    masked_img = img_cv.copy()
                    if len(masked_img.shape) == 3:
                        for c in range(masked_img.shape[2]):
                            masked_img[:,:,c][~mask] = 0
                    else:
                        masked_img[~mask] = 0
                    
                    # 旋转180度比较
                    rotated = cv2.rotate(masked_img, cv2.ROTATE_180)
                    diff = cv2.absdiff(masked_img, rotated)
                    
                    features["radial_symmetry"] = 1 - float(np.mean(diff) / 255)
            except:
                pass
    
    def _extract_frequency_features(self, img_cv, features, image_id):
        """Extract frequency domain features"""
        # 获取灰度图
        gray = self.cache.get('gray')
        if gray is None:
            gray = self.get_grayscale(image_id)
            if gray is None:
                if len(img_cv.shape) == 3:
                    gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
                else:
                    gray = img_cv
                self.cache['gray'] = gray
        
        # 如果图像较大,对FFT进行降采样
        h, w = gray.shape
        if h > 512 or w > 512:
            gray_small = cv2.resize(gray, (512, 512))
        else:
            gray_small = gray
            
        # FFT分析
        f_transform = np.fft.fft2(gray_small)
        f_shift = np.fft.fftshift(f_transform)
        magnitude = np.log(np.abs(f_shift) + 1)
        
        # 计算高/低频率比
        h, w = magnitude.shape
        center_h, center_w = h // 2, w // 2
        
        # 低频区域(中心)
        low_freq_region = magnitude[center_h-h//8:center_h+h//8, center_w-w//8:center_w+w//8]
        low_freq_mean = np.mean(low_freq_region)
        
        # 高频区域
        high_freq_mean = np.mean(magnitude) - low_freq_mean
        features["freq_ratio"] = float(high_freq_mean / max(low_freq_mean, 0.001))
        features["freq_std"] = float(np.std(magnitude))
        
        # 频率各向异性 - 对AI检测至关重要
        # 使用更少的角度以提高速度
        freq_blocks = []
        for angle in range(0, 180, 45):  # 从20°步长减少到45°步长
            mask = np.zeros_like(magnitude)
            cv2.ellipse(mask, (center_w, center_h), (w//2, h//2), angle, -10, 10, 1, -1)
            freq_blocks.append(np.mean(magnitude * mask))
        features["freq_anisotropy"] = float(np.std(freq_blocks))
        
        # 频率峰值分析 - AI生成图像通常有特定的频率峰值模式
        try:
            # 计算径向平均功率谱
            y, x = np.ogrid[-center_h:h-center_h, -center_w:w-center_w]
            r = np.sqrt(x*x + y*y)
            r = r.astype(np.int32)
            
            # 创建径向平均
            radial_mean = np.zeros(min(center_h, center_w))
            for i in range(1, len(radial_mean)):
                mask = (r == i)
                if np.sum(mask) > 0:
                    radial_mean[i] = np.mean(magnitude[mask])
            
            # 计算峰值特征
            peaks, _ = stats.find_peaks(radial_mean)
            if len(peaks) > 0:
                features["freq_peak_count"] = len(peaks)
                features["freq_peak_prominence"] = float(np.mean(radial_mean[peaks]))
        except:
            pass
    def _extract_advanced_features(self, img_cv, features, image_id):
        """Extract advanced features for AI detection"""
        # 获取灰度图
        gray = self.cache.get('gray')
        if gray is None:
            gray = self.get_grayscale(image_id)
            if gray is None:
                if len(img_cv.shape) == 3:
                    gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
                else:
                    gray = img_cv
                self.cache['gray'] = gray
        
        # 小波变换特征
        try:
            # 如果图像太大,先降采样
            if gray.shape[0] > 512 or gray.shape[1] > 512:
                gray_small = cv2.resize(gray, (512, 512))
            else:
                gray_small = gray
                
            # 执行小波变换
            coeffs = pywt.dwt2(gray_small, 'haar')
            cA, (cH, cV, cD) = coeffs
            
            # 计算各子带的统计特征
            features["wavelet_h_std"] = float(np.std(cH))
            features["wavelet_v_std"] = float(np.std(cV))
            features["wavelet_d_std"] = float(np.std(cD))
            
            # 计算小波系数的熵
            cH_hist, _ = np.histogram(cH.flatten(), bins=50)
            cV_hist, _ = np.histogram(cV.flatten(), bins=50)
            cD_hist, _ = np.histogram(cD.flatten(), bins=50)
            
            features["wavelet_h_entropy"] = float(stats.entropy(cH_hist + 1e-10))
            features["wavelet_v_entropy"] = float(stats.entropy(cV_hist + 1e-10))
            features["wavelet_d_entropy"] = float(stats.entropy(cD_hist + 1e-10))
        except:
            pass
        
        # DCT变换特征
        try:
            # 执行DCT变换
            dct = cv2.dct(np.float32(gray_small))
            
            # 计算DCT系数的统计特征
            dct_std = np.std(dct)
            features["dct_std"] = float(dct_std)
            
            # 计算DCT系数的熵
            dct_hist, _ = np.histogram(dct.flatten(), bins=50)
            features["dct_entropy"] = float(stats.entropy(dct_hist + 1e-10))
        except:
            pass
        
        # 图像质量评估
        try:
            # 计算梯度幅度图像
            sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
            sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
            gradient_magnitude = np.sqrt(sobelx**2 + sobely**2)
            
            # 计算自然度指标
            naturalness = np.mean(gradient_magnitude) / np.std(gradient_magnitude)
            features["naturalness_index"] = float(naturalness)
        except:
            pass
#############################################
# 特征分析与决策逻辑部分 - 重新调整
#############################################

# 基于图像类型的特征阈值 - 更严格的阈值
OPTIMIZED_THRESHOLDS = {
    "lbp_entropy": {
        "default": 1.8,  # 更严格的阈值
        "portrait": 1.7,
        "landscape": 1.9,
    },
    "freq_anisotropy": {
        "default": 0.005,  # 更严格的阈值
        "portrait": 0.004,
        "landscape": 0.006,
    },
    "texture_correlation": {
        "default": 0.97,  # 更严格的阈值
        "portrait": 0.96,
        "landscape": 0.97,
    },
    "horizontal_symmetry": {
        "default": 0.9,  # 更严格的阈值
        "portrait": 0.88,
        "landscape": 0.9,
    },
    "vertical_symmetry": {
        "default": 0.9,  # 更严格的阈值
        "portrait": 0.88,
        "landscape": 0.9,
    },
    "noise_spatial_std": {
        "default": 0.2,  # 更严格的阈值
        "portrait": 0.2,
        "landscape": 0.25,
    },
    "freq_ratio": {
        "default": 0.0,  # 更严格的阈值
        "portrait": -0.05,
        "landscape": 0.0,
    },
    "noise_spectrum_std": {
        "default": 600,  # 更严格的阈值
        "portrait": 600,
        "landscape": 700,
    },
    "color_entropy": {
        "default": 3.0,  # 更严格的阈值
        "portrait": 3.0,
        "landscape": 3.2,
    },
    "lbp_uniformity": {
        "default": 0.25,  # 更严格的阈值
        "portrait": 0.25,
        "landscape": 0.2,
    },
    "noise_channel_correlation": {
        "default": 0.97,  # 更严格的阈值
        "portrait": 0.97,
        "landscape": 0.95,
    },
    "wavelet_h_entropy": {
        "default": 1.5,  # 更严格的阈值
        "portrait": 1.4,
        "landscape": 1.6,
    },
    "dct_entropy": {
        "default": 0.005,  # 更严格的阈值
        "portrait": 0.004,
        "landscape": 0.006,
    },
    "naturalness_index": {
        "default": 0.6,  # 更严格的阈值
        "portrait": 0.55,
        "landscape": 0.65,
    }
}

# 特征重要性权重 - 调整权重
FEATURE_IMPORTANCE = {
    "lbp_entropy": 0.12,
    "freq_anisotropy": 0.12,
    "texture_correlation": 0.06,
    "horizontal_symmetry": 0.02,
    "vertical_symmetry": 0.02,
    "noise_spatial_std": 0.06,
    "freq_ratio": 0.04,
    "noise_spectrum_std": 0.04,
    "color_entropy": 0.06,
    "lbp_uniformity": 0.04,
    "noise_channel_correlation": 0.12,  # 增加权重
    "wavelet_h_entropy": 0.12,  # 增加权重
    "dct_entropy": 0.12,  # 增加权重
    "naturalness_index": 0.06
}

def get_threshold(feature_name, image_type="default"):
    """Get the appropriate threshold for a feature based on image type"""
    if feature_name not in OPTIMIZED_THRESHOLDS:
        return None
        
    return OPTIMIZED_THRESHOLDS[feature_name].get(image_type, 
                                               OPTIMIZED_THRESHOLDS[feature_name]["default"])

def check_ai_specific_features(image_features):
    """Enhanced check for AI-generated image features with stricter criteria"""
    ai_score = 0
    ai_signs = []
    
    # 获取图像类型
    image_type = image_features.get("image_type", "default")
    
    # 处理每个特征
    for feature_name, importance in FEATURE_IMPORTANCE.items():
        if feature_name not in image_features:
            continue
            
        value = image_features[feature_name]
        threshold = get_threshold(feature_name, image_type)
        
        if threshold is None:
            continue
        
        # 不同特征有不同的比较逻辑
        feature_score = 0
        
        # 低值表示AI生成的特征
        if feature_name in ["lbp_entropy", "freq_anisotropy", "noise_spatial_std", 
                           "freq_ratio", "noise_spectrum_std", "color_entropy",
                           "wavelet_h_entropy", "dct_entropy", "naturalness_index"]:
            if value < threshold:
                # 更严格的评分,只有显著低于阈值才给高分
                feature_score = min(1.0, (threshold - value) / threshold * 1.5)
                if feature_score > 0.7:  # 提高显著性阈值
                    ai_signs.append(f"{feature_name} 异常低 ({value:.2f})")
        
        # 高值表示AI生成的特征
        elif feature_name in ["texture_correlation", "horizontal_symmetry", "vertical_symmetry",
                             "lbp_uniformity", "noise_channel_correlation"]:
            if value > threshold:
                # 更严格的评分,只有显著高于阈值才给高分
                feature_score = min(1.0, (value - threshold) / (1 - threshold) * 1.5)
                if feature_score > 0.7:  # 提高显著性阈值
                    ai_signs.append(f"{feature_name} 异常高 ({value:.2f})")
        
        # 累加加权分数
        ai_score += feature_score * importance
    
    # 特征组合分析 - 检查特定组合模式
    if ("dct_entropy" in image_features and image_features["dct_entropy"] < 0.005 and
        "wavelet_h_entropy" in image_features and image_features["wavelet_h_entropy"] < 1.5 and
        "noise_channel_correlation" in image_features and image_features["noise_channel_correlation"] > 0.97):
        # 这种组合强烈表明是AI生成
        ai_score = max(ai_score, 0.9)
        if "特征组合模式" not in ai_signs:
            ai_signs.append("特征组合模式: 多个关键特征同时异常")
    
    # 计算检测到多少关键特征
    critical_count = len(ai_signs)
    if critical_count >= 5:
        ai_score = max(ai_score, 0.8)  # 更保守,从0.9改为0.8
    elif critical_count >= 3:
        ai_score = max(ai_score, 0.6)  # 更保守,从0.7改为0.6
    
    return min(ai_score, 1.0), ai_signs
def detect_beauty_filter_signs(image_features):
    """Detect beauty filter traces"""
    beauty_score = 0
    beauty_signs = []
    
    # 获取图像类型
    image_type = image_features.get("image_type", "default")
    
    # 只检查最重要的美颜滤镜指标
    if "face_skin_std" in image_features:
        threshold = 15 if image_type == "portrait" else 20
        if image_features["face_skin_std"] < threshold:
            beauty_score += 0.3
            beauty_signs.append("皮肤质感过于均匀")
    
    if "edge_density" in image_features:
        threshold = 0.03 if image_type == "portrait" else 0.04
        if image_features["edge_density"] < threshold:
            beauty_score += 0.2
            beauty_signs.append("边缘过于平滑")
    
    if "noise_level" in image_features:
        threshold = 1.0 if image_type == "portrait" else 1.5
        if image_features["noise_level"] < threshold:
            beauty_score += 0.2
            beauty_signs.append("噪点异常少")
    
    if "texture_homogeneity" in image_features:
        threshold = 0.5 if image_type == "portrait" else 0.4
        if image_features["texture_homogeneity"] > threshold:
            beauty_score += 0.2
            beauty_signs.append("纹理过于均匀")
    
    return min(beauty_score, 1.0), beauty_signs

def detect_photoshop_signs(image_features):
    """Detect Photoshop traces"""
    ps_score = 0
    ps_signs = []
    
    # 获取图像类型
    image_type = image_features.get("image_type", "default")
    
    # 只检查最重要的PS指标
    if "texture_homogeneity" in image_features:
        threshold = 0.4 if image_type == "portrait" else 0.35
        if image_features["texture_homogeneity"] > threshold:
            ps_score += 0.2
            ps_signs.append("皮肤质感过于均匀")
    
    if "edge_density" in image_features:
        threshold = 0.01 if image_type == "portrait" else 0.015
        if image_features["edge_density"] < threshold:
            ps_score += 0.2
            ps_signs.append("边缘过于平滑")
    
    if "color_std" in image_features:
        threshold = 50 if image_type == "portrait" else 40
        if image_features["color_std"] > threshold:
            ps_score += 0.2
            ps_signs.append("颜色分布极不自然")
    
    if "noise_spatial_std" in image_features:
        threshold = 1.0 if image_type == "portrait" else 1.2
        if image_features["noise_spatial_std"] > threshold:
            ps_score += 0.2
            ps_signs.append("噪点分布不均匀")
    
    return min(ps_score, 1.0), ps_signs

def calibrate_model_output(probability):
    """校准模型输出,解决模型偏向真人的问题"""
    # 如果模型输出总是在0.3-0.4之间,我们可以拉伸这个范围
    if 0.25 <= probability <= 0.4:
        # 将0.25-0.4范围拉伸到0.1-0.9
        return 0.1 + (probability - 0.25) * (0.9 - 0.1) / (0.4 - 0.25)
    return probability

def calibrate_feature_score(score, signs):
    """校准特征分析分数,解决特征分析偏向AI的问题"""
    # 如果特征分数高但检测到的特征少,降低分数
    if score > 0.7 and len(signs) < 3:
        return 0.5 + (score - 0.5) * 0.5  # 降低分数
    # 如果特征分数高且检测到多个特征,保持高分
    elif score > 0.7 and len(signs) >= 4:
        return score
    # 中等分数情况
    elif 0.4 < score <= 0.7:
        return 0.4 + (score - 0.4) * 0.7  # 略微降低
    return score

def calculate_model_consistency(model_results):
    """Calculate the consistency between model predictions"""
    if not model_results:
        return 0.0
        
    # 提取AI概率
    probabilities = [result.get("ai_probability", 0.5) for result in model_results.values() 
                    if "error" not in result]
    
    if not probabilities:
        return 0.0
        
    # 计算方差作为一致性度量
    variance = np.var(probabilities)
    
    # 方差越小,一致性越高
    consistency = max(0.0, 1.0 - variance * 5)  # 缩放以获得合理的一致性分数
    
    return consistency
def get_detailed_analysis(ai_probability, ps_score, beauty_score, ps_signs, ai_signs, beauty_signs, 
                         valid_models_count, ai_feature_score, model_consistency):
    """Provide detailed analysis with improved confidence assessment"""
    
    # 根据模型和特征分析的一致性调整置信度
    if abs(ai_probability - ai_feature_score) > 0.2:
        confidence_prefix = "低置信度:"
        explanation = "(模型预测和特征分析结果存在较大差异)"
    elif model_consistency > 0.8 and valid_models_count >= 2:
        confidence_prefix = "高置信度:"
        explanation = ""
    elif model_consistency > 0.6 and valid_models_count >= 2:
        confidence_prefix = "中等置信度:"
        explanation = ""
    else:
        confidence_prefix = "低置信度:"
        explanation = ""
    
    # 计算编辑分数(在所有路径中都需要)
    combined_edit_score = max(ps_score, beauty_score)
    
    # 分类逻辑 - 从中立起点开始
    if ai_probability > 0.6:
        category = confidence_prefix + "AI生成图像" + explanation
        description = "图像很可能是由AI完全生成,几乎没有真人照片的特征。"
        main_category = "AI生成"
    elif ai_probability < 0.4:
        # 第二级分类:素人 vs 修图
        if combined_edit_score > 0.5:
            category = confidence_prefix + "真人照片,修图痕迹明显" + explanation
            description = "图像基本是真人照片,但经过了明显的后期处理或美颜,修饰痕迹明显。"
            main_category = "真人照片-修图明显"
        else:
            category = confidence_prefix + "真实素人照片" + explanation
            description = "图像很可能是未经大量处理的真人照片,保留了自然的细节和特征。"
            main_category = "真人照片-素人"
    else:
        # 处理边界情况 - 添加"无法确定"类别
        category = confidence_prefix + "无法确定" + explanation
        description = "系统无法确定该图像是AI生成还是真实照片。模型预测和特征分析结果不一致,需要人工判断。"
        main_category = "无法确定"
    
    # 处理边界情况 - AI生成与高度修图
    if 0.45 < ai_probability < 0.55 and combined_edit_score > 0.7:
        category = confidence_prefix + "真人照片,修图痕迹明显(也可能是AI生成)" + explanation
        description = "图像可能是真人照片经过大量后期处理,也可能是AI生成图像。由于现代AI技术与高度修图效果相似,难以完全区分。"
        main_category = "真人照片-修图明显"
    
    # 格式化详情
    ps_details = "检测到的修图痕迹:" + "、".join(ps_signs) if ps_signs else "未检测到明显的修图痕迹。"
    ai_details = "检测到的AI特征:" + "、".join(ai_signs) if ai_signs else "未检测到明显的AI生成特征。"
    beauty_details = "检测到的美颜特征:" + "、".join(beauty_signs) if beauty_signs else "未检测到明显的美颜特征。"
    
    return category, description, ps_details, ai_details, beauty_details, main_category

def detect_ai_image(image):
    """Enhanced main detection function with improved decision logic"""
    if image is None:
        return {"error": "未提供图像"}
    
    start_time = time.time()
    image_id = str(uuid.uuid4())  # 为图像生成唯一ID,用于反馈收集
    
    # 初始化管理器
    model_manager = EnhancedModelManager()
    feature_extractor = EnhancedFeatureExtractor()
    
    # 第一阶段:快速特征分析
    # 确定是否需要降采样
    downscale_factor = 1.0
    if image.width * image.height > 1024 * 1024:  # 对于大于1MP的图像
        downscale_factor = min(1.0, 1024 * 1024 / (image.width * image.height))
    
    # 提取特征
    feature_extractor.clear_cache()  # 清除之前运行的缓存
    image_features = feature_extractor.analyze_image_features(image, downscale_factor)
    
    # 快速特征分析
    ai_feature_score, ai_signs = check_ai_specific_features(image_features)
    
    # 第二阶段:模型分析
    results = {}
    valid_models = 0
    weighted_ai_probability = 0
    
    # 使用每个模型处理
    for key, model_info in model_manager.models.items():
        model_result = model_manager.get_model_prediction(key, image)
        
        if model_result and "error" not in model_result:
            # 校准模型输出
            model_result["ai_probability"] = calibrate_model_output(model_result["ai_probability"])
            
            results[key] = model_result
            weighted_ai_probability += model_result["ai_probability"] * model_info["weight"]
            valid_models += 1
        else:
            results[key] = model_result or {"model_name": model_info["name"], "error": "处理失败"}
    
    # 计算最终加权概率
    if valid_models > 0:
        final_ai_probability = weighted_ai_probability / sum(
            m["weight"] for k, m in model_manager.models.items() 
            if k in model_manager.loaded_models
        )
    else:
        return {"error": "所有模型加载失败"}
    
    # 计算模型一致性
    model_consistency = calculate_model_consistency(results)
    
    # 分析PS和美颜痕迹
    ps_score, ps_signs = detect_photoshop_signs(image_features)
    beauty_score, beauty_signs = detect_beauty_filter_signs(image_features)
    
    # 校准特征分析分数
    calibrated_feature_score = calibrate_feature_score(ai_feature_score, ai_signs)
    
    # 从中立起点开始决策
    adjusted_probability = 0.5
    
    # 根据校准后的模型和特征分析调整概率
    if final_ai_probability > 0.7 or calibrated_feature_score > 0.8:
        # 强AI证据
        adjusted_probability = 0.5 + (final_ai_probability * 0.25 + calibrated_feature_score * 0.25)
    elif final_ai_probability < 0.3 and calibrated_feature_score < 0.3:
        # 强真人证据
        adjusted_probability = 0.5 - ((0.3 - final_ai_probability) * 0.25 + (0.3 - calibrated_feature_score) * 0.25)
    else:
        # 证据不足,保持在中间区域
        adjusted_probability = 0.5 + (final_ai_probability - 0.5) * 0.2 + (calibrated_feature_score - 0.5) * 0.2
    
    # 特征组合分析 - 强有力的组合证据
    if ("dct_entropy" in image_features and image_features["dct_entropy"] < 0.005 and
        "wavelet_h_entropy" in image_features and image_features["wavelet_h_entropy"] < 1.5 and
        "noise_channel_correlation" in image_features and image_features["noise_channel_correlation"] > 0.97):
        # 这种组合强烈表明是AI生成
        adjusted_probability = max(adjusted_probability, 0.7)
    
    # 确保概率在有效范围内
    adjusted_probability = min(1.0, max(0.0, adjusted_probability))
    
    # 获取详细分析
    category, description, ps_details, ai_details, beauty_details, main_category = get_detailed_analysis(
        adjusted_probability, ps_score, beauty_score, ps_signs, ai_signs, beauty_signs, 
        valid_models, calibrated_feature_score, model_consistency
    )
    
    # 构建最终结果
    processing_time = time.time() - start_time
    
    final_result = {
        "image_id": image_id,
        "ai_probability": adjusted_probability,
        "original_ai_probability": final_ai_probability,
        "ps_score": ps_score,
        "beauty_score": beauty_score,
        "ai_feature_score": calibrated_feature_score,
        "raw_feature_score": ai_feature_score,
        "model_consistency": model_consistency,
        "category": category,
        "main_category": main_category,
        "description": description,
        "ps_details": ps_details,
        "ai_details": ai_details,
        "beauty_details": beauty_details,
        "processing_time": f"{processing_time:.2f} seconds",
        "individual_model_results": results,
        # 只包含最重要的特征以减少响应大小
        "key_features": {k: image_features[k] for k in FEATURE_IMPORTANCE if k in image_features}
    }
    
    # 保存结果用于后续分析
    try:
        with open(f"{FEEDBACK_DIR}/{image_id}.json", "w") as f:
            json.dump(final_result, f)
    except:
        pass
    
    # 返回两个值:JSON结果和标签数据
    label_data = {main_category: 1.0}
    return final_result, label_data
def save_user_feedback(image_id, user_feedback):
    """Save user feedback for continuous learning"""
    if not image_id:
        return {"status": "error", "message": "未提供图像ID"}
    
    try:
        # 读取原始结果
        result_path = f"{FEEDBACK_DIR}/{image_id}.json"
        if not os.path.exists(result_path):
            return {"status": "error", "message": "找不到对应的图像分析结果"}
            
        with open(result_path, "r") as f:
            original_result = json.load(f)
            
        # 添加用户反馈
        feedback_data = {
            "image_id": image_id,
            "original_result": original_result,
            "user_feedback": user_feedback,
            "timestamp": datetime.now().isoformat()
        }
        
        # 保存反馈
        feedback_path = f"{FEEDBACK_DIR}/{image_id}_feedback.json"
        with open(feedback_path, "w") as f:
            json.dump(feedback_data, f)
            
        return {"status": "success", "message": "反馈已保存,感谢您的贡献!"}
    except Exception as e:
        return {"status": "error", "message": f"保存反馈时出错: {str(e)}"}

#############################################
# Gradio界面部分
#############################################

def process_image_and_show_results(image):
    """Process image and format results for Gradio interface"""
    if image is None:
        return {"error": "请上传图像"}, None, "未检测"
    
    try:
        result, label = detect_ai_image(image)
        return result, result["image_id"], result["main_category"]
    except Exception as e:
        return {"error": f"处理图像时出错: {str(e)}"}, None, "错误"

def submit_feedback(image_id, correct_classification, comments):
    """Submit user feedback"""
    if not image_id:
        return "请先上传图像进行分析"
    
    feedback = {
        "correct_classification": correct_classification,
        "comments": comments
    }
    
    result = save_user_feedback(image_id, feedback)
    return result["message"]

# 创建Gradio界面
with gr.Blocks(title="增强型AI图像检测系统") as iface:
    gr.Markdown("# 增强型AI图像检测系统")
    gr.Markdown("上传图像,系统将分析该图像是AI生成还是真实照片")
    
    with gr.Row():
        with gr.Column(scale=1):
            input_image = gr.Image(type="pil", label="上传图像")
            analyze_btn = gr.Button("分析图像", variant="primary")
        
        with gr.Column(scale=2):
            result_json = gr.JSON(label="详细分析结果")
            image_id_output = gr.Textbox(label="图像ID", visible=False)
            result_label = gr.Label(label="主要分类")
    
    gr.Markdown("## 用户反馈")
    gr.Markdown("您认为上述分类结果是否正确?您的反馈将帮助我们改进系统。")
    
    with gr.Row():
        correct_classification = gr.Radio(
            ["正确", "错误 - 这是AI生成图像", "错误 - 这是真实照片", "不确定"], 
            label="分类结果是否正确"
        )
        comments = gr.Textbox(label="其他评论(可选)")
    
    feedback_btn = gr.Button("提交反馈")
    feedback_result = gr.Textbox(label="反馈结果")
    
    # 设置事件
    analyze_btn.click(
        process_image_and_show_results, 
        inputs=[input_image], 
        outputs=[result_json, image_id_output, result_label]
    )
    
    feedback_btn.click(
        submit_feedback,
        inputs=[image_id_output, correct_classification, comments],
        outputs=[feedback_result]
    )

# 启动应用
if __name__ == "__main__":
    iface.launch(share=True)