sToryGeneration / app.py
aYeShaSiddiqA's picture
Update app.py
2dc2f18 verified
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch
model_name = "ajibawa-2023/Young-Children-Storyteller-Mistral-7B"
# Quantization config for low-memory environments
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=quant_config,
device_map="auto",
torch_dtype=torch.float16,
trust_remote_code=True
)
# Generate story function
def generate_story(prompt, max_length=400, temperature=0.7, top_p=0.9):
formatted_prompt = f"### Instruction:\nCreate a story for young children about: {prompt}\n\n### Response:\n"
inputs = tokenizer.encode(formatted_prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
inputs,
max_length=max_length,
temperature=temperature,
top_p=top_p,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
repetition_penalty=1.1
)
story = tokenizer.decode(outputs[0], skip_special_tokens=True)
return story.split("### Response:")[-1].strip()
# Gradio interface
gr.Interface(
fn=generate_story,
inputs=gr.Textbox(label="Enter a story idea for children"),
outputs=gr.Textbox(label="πŸ“– Generated Story"),
title="Young Children Story Generator",
description="Give a topic like 'A dragon who loves to cook' and get a complete child-friendly story."
).launch()