GenieverseLLM / app.py
aYeShaSiddiqA's picture
Create app.py
95154b2 verified
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import torch
model_name = "ajibawa-2023/Young-Children-Storyteller-Mistral-7B"
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Try 8-bit quantization to reduce memory usage
try:
from transformers import BitsAndBytesConfig
bnb_config = BitsAndBytesConfig(load_in_8bit=True)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", quantization_config=bnb_config)
except:
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0)
def generate_story(prompt):
outputs = generator(prompt, max_length=150, do_sample=True, temperature=0.8, top_p=0.9)
return outputs[0]['generated_text']
iface = gr.Interface(
fn=generate_story,
inputs=gr.Textbox(lines=3, placeholder="Enter your story prompt here..."),
outputs="text",
title="Young Children Storyteller",
description="Generate children's stories using Mistral 7B"
)
if __name__ == "__main__":
iface.launch()