Spaces:
Sleeping
Sleeping
File size: 8,988 Bytes
6d31173 df6116e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.multioutput import MultiOutputClassifier
from sklearn.metrics import classification_report, f1_score, accuracy_score, hamming_loss
import gradio as gr
# Load dataset
splits = {'train': 'simplified/train-00000-of-00001.parquet'}
df = pd.read_parquet("hf://datasets/google-research-datasets/go_emotions/" + splits["train"])
emotion_labels = [
"admiration", "amusement", "anger", "annoyance", "approval",
"caring", "confusion", "curiosity", "desire", "disappointment",
"disapproval", "disgust", "embarrassment", "excitement", "fear",
"gratitude", "grief", "joy", "love", "nervousness",
"optimism", "pride", "realization", "relief", "remorse",
"sadness", "surprise", "neutral"
]
index_to_emotion = {i: label for i, label in enumerate(emotion_labels)}
mlb = MultiLabelBinarizer(classes=range(28))
y = mlb.fit_transform(df['labels'])
vectorizer = TfidfVectorizer(max_features=5000)
X = vectorizer.fit_transform(df['text'])
# Placeholder for trained model
model = None
metrics_report = ""
def train_model(test_size=0.2, max_iter=1000, random_state=42):
global model, metrics_report
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=test_size, random_state=random_state
)
model = MultiOutputClassifier(LogisticRegression(max_iter=max_iter))
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
# Calculate standard classification report + other metrics
report = classification_report(
y_test, y_pred, target_names=[str(i) for i in range(28)]
)
micro_f1 = f1_score(y_test, y_pred, average="micro")
macro_f1 = f1_score(y_test, y_pred, average="macro")
acc = accuracy_score(y_test, y_pred)
hamming = hamming_loss(y_test, y_pred)
metrics_summary = f"""
Micro F1-score: {micro_f1:.4f}
Macro F1-score: {macro_f1:.4f}
Accuracy (Exact Match): {acc:.4f}
Hamming Loss: {hamming:.4f}
"""
# Save the full report
metrics_report = metrics_summary.strip() + "\n\n" + report
return "Training Complete!"
def predict_emotions(text):
if model is None:
return "Please train the model first.", ""
vectorized = vectorizer.transform([text])
probas = model.predict_proba(vectorized)
result = {}
for i, emotion in enumerate(mlb.classes_):
prob_class_1 = probas[i][0][1]
result[emotion] = round(prob_class_1 * 100, 2)
sorted_result = sorted(result.items(), key=lambda x: x[1], reverse=True)
return sorted_result
def predict_and_display(sentence):
predictions = predict_emotions(sentence)
if isinstance(predictions, str):
return predictions, ""
max_len = max(len(index_to_emotion[emo_id]) for emo_id, _ in predictions)
result = "```" + "\nEmotion Predictions:\n\n"
for emo_id, score in predictions:
emo_name = index_to_emotion[emo_id]
result += f"{emo_name.ljust(max_len)} → {score}%\n"
result += "```"
top_emotion = index_to_emotion[predictions[0][0]]
return result, top_emotion
# Gradio App
with gr.Blocks(title="Interactive Emotion Detector", theme=gr.themes.Soft()) as demo:
with gr.Tabs():
with gr.Tab("Emotion Detection"):
gr.Markdown("## Emotion Detection")
with gr.Row():
with gr.Column():
input_text = gr.Textbox(
lines=3, placeholder="Enter a sentence...", label="Input Sentence"
)
submit_btn = gr.Button("Analyze Emotion")
with gr.Column():
output_text = gr.Markdown(label="Prediction Results")
top_emotion = gr.Label(label="Top Emotion")
submit_btn.click(
fn=predict_and_display,
inputs=input_text,
outputs=[output_text, top_emotion]
)
with gr.Tab("Dataset"):
gr.Markdown("## Dataset Information")
def dataset_info():
df = pd.read_parquet("hf://datasets/google-research-datasets/go_emotions/simplified/train-00000-of-00001.parquet")
total_samples = len(df)
emotions = sorted(set(e for label in df['labels'] for e in label))
emotion_names = [emotion_labels[i] for i in emotions]
# Count distribution
all_labels = [emotion_labels[i] for sublist in df['labels'] for i in sublist]
label_counts = pd.Series(all_labels).value_counts().sort_index()
label_df = pd.DataFrame({
"Emotion": label_counts.index,
"Count": label_counts.values
})
stats = f"""
**Total Samples**: {total_samples}
**Emotion Classes**: {', '.join(emotion_names)}
"""
return stats, label_df
stats_display = gr.Markdown()
dist_table = gr.Dataframe(headers=["Emotion", "Count"], interactive=False)
load_btn = gr.Button("Load Dataset Info")
load_btn.click(fn=dataset_info, inputs=[], outputs=[stats_display, dist_table])
with gr.Tab("EDA"):
gr.Markdown("## Exploratory Data Analysis")
eda_btn = gr.Button("Run EDA")
eda_output = gr.Plot(label="EDA Output")
def run_eda():
import matplotlib.pyplot as plt
from collections import Counter
import re
# Define the label map inside the function
label_map = [
'admiration', 'amusement', 'anger', 'annoyance', 'approval',
'caring', 'confusion', 'curiosity', 'desire', 'disappointment',
'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear',
'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism',
'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise',
'neutral'
]
fig, axs = plt.subplots(2, 2, figsize=(18, 10))
# Label distribution
label_counts = df['labels'].explode().value_counts().sort_index()
axs[0, 0].bar(label_map, label_counts)
axs[0, 0].set_title("Label Frequency Distribution")
axs[0, 0].tick_params(axis='x', rotation=45)
# Labels per example
df['num_labels'] = df['labels'].apply(len)
df['num_labels'].value_counts().sort_index().plot(kind='bar', ax=axs[0, 1])
axs[0, 1].set_title("Number of Labels per Example")
# Text length distribution
df['text_length'] = df['text'].apply(len)
df['text_length'].hist(bins=50, ax=axs[1, 0])
axs[1, 0].set_title("Distribution of Text Lengths")
axs[1, 0].set_xlabel("Text Length (characters)")
axs[1, 0].set_ylabel("Frequency")
# Most common words
all_words = " ".join(df['text']).lower()
tokens = re.findall(r'\b\w+\b', all_words)
common_words = Counter(tokens).most_common(20)
words, freqs = zip(*common_words)
axs[1, 1].bar(words, freqs)
axs[1, 1].set_title("Top 20 Most Common Words")
axs[1, 1].tick_params(axis='x', rotation=45)
plt.tight_layout()
return fig
eda_btn.click(fn=run_eda, inputs=[], outputs=eda_output)
with gr.Tab("Train Model"):
gr.Markdown("## Train Your Emotion Model")
test_size = gr.Slider(0.1, 0.5, step=0.05, value=0.2, label="Test Size")
max_iter = gr.Slider(100, 5000, step=100, value=1000, label="Max Iterations")
random_state = gr.Number(value=42, label="Random State")
train_button = gr.Button("Train Model")
train_status = gr.Textbox(label="Training Status")
train_button.click(
fn=train_model,
inputs=[test_size, max_iter, random_state],
outputs=train_status
)
with gr.Tab("Results"):
gr.Markdown("## Evaluation Metrics")
results_output = gr.Markdown(label="Classification Report")
def get_report():
return "```\n" + metrics_report + "\n```"
refresh_btn = gr.Button("Refresh Report")
refresh_btn.click(
fn=get_report,
inputs=[],
outputs=results_output
)
demo.launch()
|