Spaces:
Sleeping
Sleeping
some fixes in generating kwargs
Browse files
app.py
CHANGED
@@ -1,40 +1,23 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer,
|
4 |
from threading import Thread
|
|
|
5 |
|
6 |
|
7 |
tokenizer = AutoTokenizer.from_pretrained("IlyaGusev/saiga_llama3_8b")
|
8 |
model = AutoModelForCausalLM.from_pretrained("IlyaGusev/saiga_llama3_8b", torch_dtype=torch.bfloat16)
|
9 |
-
model = model
|
10 |
-
|
11 |
-
|
12 |
-
class StopOnTokens(StoppingCriteria):
|
13 |
-
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
14 |
-
stop_ids = [29, 0]
|
15 |
-
for stop_id in stop_ids:
|
16 |
-
if input_ids[0][-1] == stop_id:
|
17 |
-
return True
|
18 |
-
return False
|
19 |
|
20 |
|
21 |
def predict(message, history):
|
22 |
print(history)
|
23 |
history_transformer_format = history + [{"role": "user", "content": message},
|
24 |
{"role": "assistant", "content": ""}]
|
25 |
-
stop = StopOnTokens()
|
26 |
|
27 |
-
# messages = "".join(["".join(["<|start_header_id|>user<|end_header_id|>\n"+item[0],
|
28 |
-
# "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n"+item[1]])
|
29 |
-
# for item in history_transformer_format])
|
30 |
-
# messages = [{"role": "user", item[0], "content": item[1]} for item in history_transformer_format]
|
31 |
-
#print(messages)
|
32 |
-
|
33 |
-
# model_inputs = tokenizer([messages], return_tensors="pt") # .to("cuda")
|
34 |
model_inputs = tokenizer.apply_chat_template(history_transformer_format, return_tensors="pt")
|
35 |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
36 |
generate_kwargs = dict(
|
37 |
-
model_inputs,
|
38 |
streamer=streamer,
|
39 |
max_new_tokens=1024,
|
40 |
do_sample=True,
|
@@ -42,9 +25,9 @@ def predict(message, history):
|
|
42 |
top_k=1000,
|
43 |
temperature=1.0,
|
44 |
num_beams=1,
|
45 |
-
|
46 |
-
|
47 |
-
t = Thread(target=
|
48 |
t.start()
|
49 |
|
50 |
partial_message = ""
|
@@ -53,4 +36,5 @@ def predict(message, history):
|
|
53 |
partial_message += new_token
|
54 |
yield partial_message
|
55 |
|
|
|
56 |
gr.ChatInterface(predict).launch(share=True)
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
4 |
from threading import Thread
|
5 |
+
from functools import partial
|
6 |
|
7 |
|
8 |
tokenizer = AutoTokenizer.from_pretrained("IlyaGusev/saiga_llama3_8b")
|
9 |
model = AutoModelForCausalLM.from_pretrained("IlyaGusev/saiga_llama3_8b", torch_dtype=torch.bfloat16)
|
10 |
+
model = model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
|
13 |
def predict(message, history):
|
14 |
print(history)
|
15 |
history_transformer_format = history + [{"role": "user", "content": message},
|
16 |
{"role": "assistant", "content": ""}]
|
|
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
model_inputs = tokenizer.apply_chat_template(history_transformer_format, return_tensors="pt")
|
19 |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
20 |
generate_kwargs = dict(
|
|
|
21 |
streamer=streamer,
|
22 |
max_new_tokens=1024,
|
23 |
do_sample=True,
|
|
|
25 |
top_k=1000,
|
26 |
temperature=1.0,
|
27 |
num_beams=1,
|
28 |
+
)
|
29 |
+
generating_func = partial(model.generate, model_inputs)
|
30 |
+
t = Thread(target=generating_func, kwargs=generate_kwargs)
|
31 |
t.start()
|
32 |
|
33 |
partial_message = ""
|
|
|
36 |
partial_message += new_token
|
37 |
yield partial_message
|
38 |
|
39 |
+
|
40 |
gr.ChatInterface(predict).launch(share=True)
|