Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer | |
from threading import Thread | |
tokenizer = AutoTokenizer.from_pretrained("IlyaGusev/saiga_llama3_8b") | |
model = AutoModelForCausalLM.from_pretrained("IlyaGusev/saiga_llama3_8b", torch_dtype=torch.bfloat16) | |
model = model #.to('cuda') | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
stop_ids = [29, 0] | |
for stop_id in stop_ids: | |
if input_ids[0][-1] == stop_id: | |
return True | |
return False | |
def predict(message, history): | |
print(history) | |
history_transformer_format = history + [{"role": "user", "content": message}, | |
{"role": "assistant", "content": ""}] | |
stop = StopOnTokens() | |
# messages = "".join(["".join(["<|start_header_id|>user<|end_header_id|>\n"+item[0], | |
# "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n"+item[1]]) | |
# for item in history_transformer_format]) | |
# messages = [{"role": "user", item[0], "content": item[1]} for item in history_transformer_format] | |
#print(messages) | |
# model_inputs = tokenizer([messages], return_tensors="pt") # .to("cuda") | |
model_inputs = tokenizer.apply_chat_template(history_transformer_format, return_tensors="pt") | |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=1024, | |
do_sample=True, | |
top_p=0.95, | |
top_k=1000, | |
temperature=1.0, | |
num_beams=1, | |
stopping_criteria=StoppingCriteriaList([stop]) | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
partial_message = "" | |
for new_token in streamer: | |
if new_token != '<': | |
partial_message += new_token | |
yield partial_message | |
gr.ChatInterface(predict).launch(share=True) | |