# FILE: modules/config_settings_public.py (Hugging Face Demo) import os import sys import logging from huggingface_hub import hf_hub_download logger = logging.getLogger("ZOTHEOS_Config") if not logger.handlers: handler = logging.StreamHandler(sys.stdout) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - [%(funcName)s] - %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.INFO) # --- ✅ WEB-OPTIMIZED MODEL SOURCES --- # These models are smaller and faster, perfect for a CPU-based web demo. MODEL_DEFINITIONS = { "mistral": { "repo_id": "TheBloke/Mistral-7B-Instruct-v0.2-GGUF", "filename": "mistral-7b-instruct-v0.2.Q2_K.gguf" # Using a smaller Q2_K quantization for speed }, "gemma": { "repo_id": "TheBloke/gemma-2b-it-GGUF", "filename": "gemma-2b-it.Q4_K_M.gguf" # Using the 2B parameter version }, "qwen": { "repo_id": "TheBloke/Qwen1.5-1.8B-Chat-GGUF", "filename": "qwen1.5-1.8b-chat.Q4_K_M.gguf" # Using the 1.8B parameter version } } MODEL_PATHS = {} # This logic will only run when the code is on Hugging Face Spaces. logger.info("✅✅✅ RUNNING IN WEB DEMO MODE (Hugging Face Space) ✅✅✅") N_GPU_LAYERS_FALLBACK = 0 # Force CPU-only mode for Hugging Face free tier for name, model_info in MODEL_DEFINITIONS.items(): logger.info(f"Downloading model for demo: {name} from {model_info['repo_id']}") try: MODEL_PATHS[name] = hf_hub_download(repo_id=model_info["repo_id"], filename=model_info["filename"]) logger.info(f"✅ Successfully downloaded {name}") except Exception as e: logger.error(f"❌ FAILED to download {name}: {e}") raise e # --- ✅ WEB-OPTIMIZED MODEL PARAMETERS --- MODEL_SPECIFIC_PARAMS = { "_default": { "n_gpu_layers": N_GPU_LAYERS_FALLBACK, # Ensures CPU usage "n_ctx": 4096, # Smaller context window for lower RAM usage "n_batch": 512, # Standard batch size for CPU "verbose": True }, "mistral": { "chat_format": "mistral-instruct" }, "gemma": { "chat_format": "gemma" }, "qwen": { "chat_format": "chatml" } } # --- ✅ TIER INFERENCE PRESETS --- INFERENCE_PRESETS = { "balanced": {"temperature": 0.7, "top_p": 0.9, "max_tokens": 1024, "repeat_penalty": 1.1 }, "precise": {"temperature": 0.2, "top_p": 0.7, "top_k": 20, "max_tokens": 1536, "repeat_penalty": 1.05 }, "creative": {"temperature": 0.9, "top_p": 0.95, "top_k": 60, "max_tokens": 1024, "repeat_penalty": 1.15 } } DEFAULT_INFERENCE_PRESET = "balanced" # --- ✅ TIER MODEL ROLES AND PROMPTS --- DEFAULT_SYSTEM_PROMPT = "You are ZOTHEOS, an ethical AI developed to help humanity. Be clear, respectful, and helpful. Respond only in English." MODEL_ROLES = {"mistral": "analyst", "gemma": "humanist", "qwen": "skeptic"} MODEL_ROLE_SYSTEM_PROMPTS = { "analyst": "You are an impartial analyst. Provide structured, logical insights. Break down complex topics into clear, understandable points. Respond only in English.", "humanist": "You are an empathetic and values-driven AI. Focus on the emotional, ethical, and societal impact. Consider the human element above all. Respond only in English.", "skeptic": "You are a respectful but rigorous skeptic. Challenge the user's premise, identify potential risks, question assumptions, and explore alternative interpretations. Respond only in English.", } logger.info("✅ Hugging Face Demo Configuration Loaded Successfully.")