from typing import * import numpy as np import matplotlib def colorize_depth(depth: np.ndarray, mask: np.ndarray = None, normalize: bool = True, cmap: str = 'Spectral') -> np.ndarray: if mask is None: depth = np.where(depth > 0, depth, np.nan) else: depth = np.where((depth > 0) & mask, depth, np.nan) disp = 1 / depth if normalize: min_disp, max_disp = np.nanquantile(disp, 0.001), np.nanquantile(disp, 0.99) disp = (disp - min_disp) / (max_disp - min_disp) colored = np.nan_to_num(matplotlib.colormaps[cmap](1.0 - disp)[..., :3], 0) colored = np.ascontiguousarray((colored.clip(0, 1) * 255).astype(np.uint8)) return colored def colorize_depth_affine(depth: np.ndarray, mask: np.ndarray = None, cmap: str = 'Spectral') -> np.ndarray: if mask is not None: depth = np.where(mask, depth, np.nan) min_depth, max_depth = np.nanquantile(depth, 0.001), np.nanquantile(depth, 0.999) depth = (depth - min_depth) / (max_depth - min_depth) colored = np.nan_to_num(matplotlib.colormaps[cmap](depth)[..., :3], 0) colored = np.ascontiguousarray((colored.clip(0, 1) * 255).astype(np.uint8)) return colored def colorize_disparity(disparity: np.ndarray, mask: np.ndarray = None, normalize: bool = True, cmap: str = 'Spectral') -> np.ndarray: if mask is not None: disparity = np.where(mask, disparity, np.nan) if normalize: min_disp, max_disp = np.nanquantile(disparity, 0.001), np.nanquantile(disparity, 0.999) disparity = (disparity - min_disp) / (max_disp - min_disp) colored = np.nan_to_num(matplotlib.colormaps[cmap](1.0 - disparity)[..., :3], 0) colored = np.ascontiguousarray((colored.clip(0, 1) * 255).astype(np.uint8)) return colored def colorize_segmentation(segmentation: np.ndarray, cmap: str = 'Set1') -> np.ndarray: colored = matplotlib.colormaps[cmap]((segmentation % 20) / 20)[..., :3] colored = np.ascontiguousarray((colored.clip(0, 1) * 255).astype(np.uint8)) return colored def colorize_normal(normal: np.ndarray, mask: np.ndarray = None) -> np.ndarray: if mask is not None: normal = np.where(mask[..., None], normal, 0) normal = normal * [0.5, -0.5, -0.5] + 0.5 normal = (normal.clip(0, 1) * 255).astype(np.uint8) return normal def colorize_error_map(error_map: np.ndarray, mask: np.ndarray = None, cmap: str = 'plasma', value_range: Tuple[float, float] = None): vmin, vmax = value_range if value_range is not None else (np.nanmin(error_map), np.nanmax(error_map)) cmap = matplotlib.colormaps[cmap] colorized_error_map = cmap(((error_map - vmin) / (vmax - vmin)).clip(0, 1))[..., :3] if mask is not None: colorized_error_map = np.where(mask[..., None], colorized_error_map, 0) colorized_error_map = np.ascontiguousarray((colorized_error_map.clip(0, 1) * 255).astype(np.uint8)) return colorized_error_map