xiaoyuxi
gradio_app
a51c6d2
from typing import *
import fnmatch
import sympy
import torch
import torch.nn as nn
def any_match(s: str, patterns: List[str]) -> bool:
return any(fnmatch.fnmatch(s, pat) for pat in patterns)
def build_optimizer(model: nn.Module, optimizer_config: Dict[str, Any]) -> torch.optim.Optimizer:
named_param_groups = [
{
k: p for k, p in model.named_parameters() if any_match(k, param_group_config['params']['include']) and not any_match(k, param_group_config['params'].get('exclude', []))
} for param_group_config in optimizer_config['params']
]
excluded_params = [k for k, p in model.named_parameters() if p.requires_grad and not any(k in named_params for named_params in named_param_groups)]
assert len(excluded_params) == 0, f'The following parameters require grad but are excluded from the optimizer: {excluded_params}'
optimizer_cls = getattr(torch.optim, optimizer_config['type'])
optimizer = optimizer_cls([
{
**param_group_config,
'params': list(params.values()),
} for param_group_config, params in zip(optimizer_config['params'], named_param_groups)
])
return optimizer
def parse_lr_lambda(s: str) -> Callable[[int], float]:
epoch = sympy.symbols('epoch')
lr_lambda = sympy.sympify(s)
return sympy.lambdify(epoch, lr_lambda, 'math')
def build_lr_scheduler(optimizer: torch.optim.Optimizer, scheduler_config: Dict[str, Any]) -> torch.optim.lr_scheduler._LRScheduler:
if scheduler_config['type'] == "SequentialLR":
child_schedulers = [
build_lr_scheduler(optimizer, child_scheduler_config)
for child_scheduler_config in scheduler_config['params']['schedulers']
]
return torch.optim.lr_scheduler.SequentialLR(optimizer, schedulers=child_schedulers, milestones=scheduler_config['params']['milestones'])
elif scheduler_config['type'] == "LambdaLR":
lr_lambda = scheduler_config['params']['lr_lambda']
if isinstance(lr_lambda, str):
lr_lambda = parse_lr_lambda(lr_lambda)
elif isinstance(lr_lambda, list):
lr_lambda = [parse_lr_lambda(l) for l in lr_lambda]
return torch.optim.lr_scheduler.LambdaLR(
optimizer,
lr_lambda=lr_lambda,
)
else:
scheduler_cls = getattr(torch.optim.lr_scheduler, scheduler_config['type'])
scheduler = scheduler_cls(optimizer, **scheduler_config.get('params', {}))
return scheduler