xiaoyuxi
gradio_app
a51c6d2
from typing import *
from numbers import Number
import torch
import torch.nn.functional as F
import numpy as np
import utils3d
from ..utils.geometry_torch import (
weighted_mean,
mask_aware_nearest_resize,
intrinsics_to_fov
)
from ..utils.alignment import (
align_points_scale_z_shift,
align_points_scale_xyz_shift,
align_points_xyz_shift,
align_affine_lstsq,
align_depth_scale,
align_depth_affine,
align_points_scale,
)
from ..utils.tools import key_average, timeit
def rel_depth(pred: torch.Tensor, gt: torch.Tensor, eps: float = 1e-6):
rel = (torch.abs(pred - gt) / (gt + eps)).mean()
return rel.item()
def delta1_depth(pred: torch.Tensor, gt: torch.Tensor, eps: float = 1e-6):
delta1 = (torch.maximum(gt / pred, pred / gt) < 1.25).float().mean()
return delta1.item()
def rel_point(pred: torch.Tensor, gt: torch.Tensor, eps: float = 1e-6):
dist_gt = torch.norm(gt, dim=-1)
dist_err = torch.norm(pred - gt, dim=-1)
rel = (dist_err / (dist_gt + eps)).mean()
return rel.item()
def delta1_point(pred: torch.Tensor, gt: torch.Tensor, eps: float = 1e-6):
dist_pred = torch.norm(pred, dim=-1)
dist_gt = torch.norm(gt, dim=-1)
dist_err = torch.norm(pred - gt, dim=-1)
delta1 = (dist_err < 0.25 * torch.minimum(dist_gt, dist_pred)).float().mean()
return delta1.item()
def rel_point_local(pred: torch.Tensor, gt: torch.Tensor, diameter: torch.Tensor):
dist_err = torch.norm(pred - gt, dim=-1)
rel = (dist_err / diameter).mean()
return rel.item()
def delta1_point_local(pred: torch.Tensor, gt: torch.Tensor, diameter: torch.Tensor):
dist_err = torch.norm(pred - gt, dim=-1)
delta1 = (dist_err < 0.25 * diameter).float().mean()
return delta1.item()
def boundary_f1(pred: torch.Tensor, gt: torch.Tensor, mask: torch.Tensor, radius: int = 1):
neighbor_x, neight_y = torch.meshgrid(
torch.linspace(-radius, radius, 2 * radius + 1, device=pred.device),
torch.linspace(-radius, radius, 2 * radius + 1, device=pred.device),
indexing='xy'
)
neighbor_mask = (neighbor_x ** 2 + neight_y ** 2) <= radius ** 2 + 1e-5
pred_window = utils3d.torch.sliding_window_2d(pred, window_size=2 * radius + 1, stride=1, dim=(-2, -1)) # [H, W, 2*R+1, 2*R+1]
gt_window = utils3d.torch.sliding_window_2d(gt, window_size=2 * radius + 1, stride=1, dim=(-2, -1)) # [H, W, 2*R+1, 2*R+1]
mask_window = neighbor_mask & utils3d.torch.sliding_window_2d(mask, window_size=2 * radius + 1, stride=1, dim=(-2, -1)) # [H, W, 2*R+1, 2*R+1]
pred_rel = pred_window / pred[radius:-radius, radius:-radius, None, None]
gt_rel = gt_window / gt[radius:-radius, radius:-radius, None, None]
valid = mask[radius:-radius, radius:-radius, None, None] & mask_window
f1_list = []
w_list = t_list = torch.linspace(0.05, 0.25, 10).tolist()
for t in t_list:
pred_label = pred_rel > 1 + t
gt_label = gt_rel > 1 + t
TP = (pred_label & gt_label & valid).float().sum()
precision = TP / (gt_label & valid).float().sum().clamp_min(1e-12)
recall = TP / (pred_label & valid).float().sum().clamp_min(1e-12)
f1 = 2 * precision * recall / (precision + recall).clamp_min(1e-12)
f1_list.append(f1.item())
f1_avg = sum(w * f1 for w, f1 in zip(w_list, f1_list)) / sum(w_list)
return f1_avg
def compute_metrics(
pred: Dict[str, torch.Tensor],
gt: Dict[str, torch.Tensor],
vis: bool = False
) -> Tuple[Dict[str, Dict[str, Number]], Dict[str, torch.Tensor]]:
"""
A unified function to compute metrics for different types of predictions and ground truths.
#### Supported keys in pred:
- `disparity_affine_invariant`: disparity map predicted by a depth estimator with scale and shift invariant.
- `depth_scale_invariant`: depth map predicted by a depth estimator with scale invariant.
- `depth_affine_invariant`: depth map predicted by a depth estimator with scale and shift invariant.
- `depth_metric`: depth map predicted by a depth estimator with no scale or shift.
- `points_scale_invariant`: point map predicted by a point estimator with scale invariant.
- `points_affine_invariant`: point map predicted by a point estimator with scale and xyz shift invariant.
- `points_metric`: point map predicted by a point estimator with no scale or shift.
- `intrinsics`: normalized camera intrinsics matrix.
#### Required keys in gt:
- `depth`: depth map ground truth (in metric units if `depth_metric` is used)
- `points`: point map ground truth in camera coordinates.
- `mask`: mask indicating valid pixels in the ground truth.
- `intrinsics`: normalized ground-truth camera intrinsics matrix.
- `is_metric`: whether the depth is in metric units.
"""
metrics = {}
misc = {}
mask = gt['depth_mask']
gt_depth = gt['depth']
gt_points = gt['points']
height, width = mask.shape[-2:]
_, lr_mask, lr_index = mask_aware_nearest_resize(None, mask, (64, 64), return_index=True)
only_depth = not any('point' in k for k in pred)
pred_depth_aligned, pred_points_aligned = None, None
# Metric depth
if 'depth_metric' in pred and gt['is_metric']:
pred_depth, gt_depth = pred['depth_metric'], gt['depth']
metrics['depth_metric'] = {
'rel': rel_depth(pred_depth[mask], gt_depth[mask]),
'delta1': delta1_depth(pred_depth[mask], gt_depth[mask])
}
if pred_depth_aligned is None:
pred_depth_aligned = pred_depth
# Scale-invariant depth
if 'depth_scale_invariant' in pred:
pred_depth_scale_invariant = pred['depth_scale_invariant']
elif 'depth_metric' in pred:
pred_depth_scale_invariant = pred['depth_metric']
else:
pred_depth_scale_invariant = None
if pred_depth_scale_invariant is not None:
pred_depth = pred_depth_scale_invariant
pred_depth_lr_masked, gt_depth_lr_masked = pred_depth[lr_index][lr_mask], gt_depth[lr_index][lr_mask]
scale = align_depth_scale(pred_depth_lr_masked, gt_depth_lr_masked, 1 / gt_depth_lr_masked)
pred_depth = pred_depth * scale
metrics['depth_scale_invariant'] = {
'rel': rel_depth(pred_depth[mask], gt_depth[mask]),
'delta1': delta1_depth(pred_depth[mask], gt_depth[mask])
}
if pred_depth_aligned is None:
pred_depth_aligned = pred_depth
# Affine-invariant depth
if 'depth_affine_invariant' in pred:
pred_depth_affine_invariant = pred['depth_affine_invariant']
elif 'depth_scale_invariant' in pred:
pred_depth_affine_invariant = pred['depth_scale_invariant']
elif 'depth_metric' in pred:
pred_depth_affine_invariant = pred['depth_metric']
else:
pred_depth_affine_invariant = None
if pred_depth_affine_invariant is not None:
pred_depth = pred_depth_affine_invariant
pred_depth_lr_masked, gt_depth_lr_masked = pred_depth[lr_index][lr_mask], gt_depth[lr_index][lr_mask]
scale, shift = align_depth_affine(pred_depth_lr_masked, gt_depth_lr_masked, 1 / gt_depth_lr_masked)
pred_depth = pred_depth * scale + shift
metrics['depth_affine_invariant'] = {
'rel': rel_depth(pred_depth[mask], gt_depth[mask]),
'delta1': delta1_depth(pred_depth[mask], gt_depth[mask])
}
if pred_depth_aligned is None:
pred_depth_aligned = pred_depth
# Affine-invariant disparity
if 'disparity_affine_invariant' in pred:
pred_disparity_affine_invariant = pred['disparity_affine_invariant']
elif 'depth_scale_invariant' in pred:
pred_disparity_affine_invariant = 1 / pred['depth_scale_invariant']
elif 'depth_metric' in pred:
pred_disparity_affine_invariant = 1 / pred['depth_metric']
else:
pred_disparity_affine_invariant = None
if pred_disparity_affine_invariant is not None:
pred_disp = pred_disparity_affine_invariant
scale, shift = align_affine_lstsq(pred_disp[mask], 1 / gt_depth[mask])
pred_disp = pred_disp * scale + shift
# NOTE: The alignment is done on the disparity map could introduce extreme outliers at disparities close to 0.
# Therefore we clamp the disparities by minimum ground truth disparity.
pred_depth = 1 / pred_disp.clamp_min(1 / gt_depth[mask].max().item())
metrics['disparity_affine_invariant'] = {
'rel': rel_depth(pred_depth[mask], gt_depth[mask]),
'delta1': delta1_depth(pred_depth[mask], gt_depth[mask])
}
if pred_depth_aligned is None:
pred_depth_aligned = 1 / pred_disp.clamp_min(1e-6)
# Metric points
if 'points_metric' in pred and gt['is_metric']:
pred_points = pred['points_metric']
pred_points_lr_masked, gt_points_lr_masked = pred_points[lr_index][lr_mask], gt_points[lr_index][lr_mask]
shift = align_points_xyz_shift(pred_points_lr_masked, gt_points_lr_masked, 1 / gt_points_lr_masked.norm(dim=-1))
pred_points = pred_points + shift
metrics['points_metric'] = {
'rel': rel_point(pred_points[mask], gt_points[mask]),
'delta1': delta1_point(pred_points[mask], gt_points[mask])
}
if pred_points_aligned is None:
pred_points_aligned = pred['points_metric']
# Scale-invariant points (in camera space)
if 'points_scale_invariant' in pred:
pred_points_scale_invariant = pred['points_scale_invariant']
elif 'points_metric' in pred:
pred_points_scale_invariant = pred['points_metric']
else:
pred_points_scale_invariant = None
if pred_points_scale_invariant is not None:
pred_points = pred_points_scale_invariant
pred_points_lr_masked, gt_points_lr_masked = pred_points_scale_invariant[lr_index][lr_mask], gt_points[lr_index][lr_mask]
scale = align_points_scale(pred_points_lr_masked, gt_points_lr_masked, 1 / gt_points_lr_masked.norm(dim=-1))
pred_points = pred_points * scale
metrics['points_scale_invariant'] = {
'rel': rel_point(pred_points[mask], gt_points[mask]),
'delta1': delta1_point(pred_points[mask], gt_points[mask])
}
if vis and pred_points_aligned is None:
pred_points_aligned = pred['points_scale_invariant'] * scale
# Affine-invariant points
if 'points_affine_invariant' in pred:
pred_points_affine_invariant = pred['points_affine_invariant']
elif 'points_scale_invariant' in pred:
pred_points_affine_invariant = pred['points_scale_invariant']
elif 'points_metric' in pred:
pred_points_affine_invariant = pred['points_metric']
else:
pred_points_affine_invariant = None
if pred_points_affine_invariant is not None:
pred_points = pred_points_affine_invariant
pred_points_lr_masked, gt_points_lr_masked = pred_points[lr_index][lr_mask], gt_points[lr_index][lr_mask]
scale, shift = align_points_scale_xyz_shift(pred_points_lr_masked, gt_points_lr_masked, 1 / gt_points_lr_masked.norm(dim=-1))
pred_points = pred_points * scale + shift
metrics['points_affine_invariant'] = {
'rel': rel_point(pred_points[mask], gt_points[mask]),
'delta1': delta1_point(pred_points[mask], gt_points[mask])
}
if vis and pred_points_aligned is None:
pred_points_aligned = pred['points_affine_invariant'] * scale + shift
# Local points
if 'segmentation_mask' in gt and 'points' in gt and any('points' in k for k in pred.keys()):
pred_points = next(pred[k] for k in pred.keys() if 'points' in k)
gt_points = gt['points']
segmentation_mask = gt['segmentation_mask']
segmentation_labels = gt['segmentation_labels']
segmentation_mask_lr = segmentation_mask[lr_index]
local_points_metrics = []
for _, seg_id in segmentation_labels.items():
valid_mask = (segmentation_mask == seg_id) & mask
pred_points_masked = pred_points[valid_mask]
gt_points_masked = gt_points[valid_mask]
valid_mask_lr = (segmentation_mask_lr == seg_id) & lr_mask
if valid_mask_lr.sum().item() < 10:
continue
pred_points_masked_lr = pred_points[lr_index][valid_mask_lr]
gt_points_masked_lr = gt_points[lr_index][valid_mask_lr]
diameter = (gt_points_masked.max(dim=0).values - gt_points_masked.min(dim=0).values).max()
scale, shift = align_points_scale_xyz_shift(pred_points_masked_lr, gt_points_masked_lr, 1 / diameter.expand(gt_points_masked_lr.shape[0]))
pred_points_masked = pred_points_masked * scale + shift
local_points_metrics.append({
'rel': rel_point_local(pred_points_masked, gt_points_masked, diameter),
'delta1': delta1_point_local(pred_points_masked, gt_points_masked, diameter),
})
metrics['local_points'] = key_average(local_points_metrics)
# FOV. NOTE: If there is no random augmentation applied to the input images, all GT FOV are generallly the same.
# Fair evaluation of FOV requires random augmentation.
if 'intrinsics' in pred and 'intrinsics' in gt:
pred_intrinsics = pred['intrinsics']
gt_intrinsics = gt['intrinsics']
pred_fov_x, pred_fov_y = intrinsics_to_fov(pred_intrinsics)
gt_fov_x, gt_fov_y = intrinsics_to_fov(gt_intrinsics)
metrics['fov_x'] = {
'mae': torch.rad2deg(pred_fov_x - gt_fov_x).abs().mean().item(),
'deviation': torch.rad2deg(pred_fov_x - gt_fov_x).item(),
}
# Boundary F1
if pred_depth_aligned is not None and gt['has_sharp_boundary']:
metrics['boundary'] = {
'radius1_f1': boundary_f1(pred_depth_aligned, gt_depth, mask, radius=1),
'radius2_f1': boundary_f1(pred_depth_aligned, gt_depth, mask, radius=2),
'radius3_f1': boundary_f1(pred_depth_aligned, gt_depth, mask, radius=3),
}
if vis:
if pred_points_aligned is not None:
misc['pred_points'] = pred_points_aligned
if only_depth:
misc['pred_points'] = utils3d.torch.depth_to_points(pred_depth_aligned, intrinsics=gt['intrinsics'])
if pred_depth_aligned is not None:
misc['pred_depth'] = pred_depth_aligned
return metrics, misc