Spaces:
Running
on
Zero
Running
on
Zero
from typing import * | |
from numbers import Number | |
import torch | |
import torch.nn.functional as F | |
import numpy as np | |
import utils3d | |
from ..utils.geometry_torch import ( | |
weighted_mean, | |
mask_aware_nearest_resize, | |
intrinsics_to_fov | |
) | |
from ..utils.alignment import ( | |
align_points_scale_z_shift, | |
align_points_scale_xyz_shift, | |
align_points_xyz_shift, | |
align_affine_lstsq, | |
align_depth_scale, | |
align_depth_affine, | |
align_points_scale, | |
) | |
from ..utils.tools import key_average, timeit | |
def rel_depth(pred: torch.Tensor, gt: torch.Tensor, eps: float = 1e-6): | |
rel = (torch.abs(pred - gt) / (gt + eps)).mean() | |
return rel.item() | |
def delta1_depth(pred: torch.Tensor, gt: torch.Tensor, eps: float = 1e-6): | |
delta1 = (torch.maximum(gt / pred, pred / gt) < 1.25).float().mean() | |
return delta1.item() | |
def rel_point(pred: torch.Tensor, gt: torch.Tensor, eps: float = 1e-6): | |
dist_gt = torch.norm(gt, dim=-1) | |
dist_err = torch.norm(pred - gt, dim=-1) | |
rel = (dist_err / (dist_gt + eps)).mean() | |
return rel.item() | |
def delta1_point(pred: torch.Tensor, gt: torch.Tensor, eps: float = 1e-6): | |
dist_pred = torch.norm(pred, dim=-1) | |
dist_gt = torch.norm(gt, dim=-1) | |
dist_err = torch.norm(pred - gt, dim=-1) | |
delta1 = (dist_err < 0.25 * torch.minimum(dist_gt, dist_pred)).float().mean() | |
return delta1.item() | |
def rel_point_local(pred: torch.Tensor, gt: torch.Tensor, diameter: torch.Tensor): | |
dist_err = torch.norm(pred - gt, dim=-1) | |
rel = (dist_err / diameter).mean() | |
return rel.item() | |
def delta1_point_local(pred: torch.Tensor, gt: torch.Tensor, diameter: torch.Tensor): | |
dist_err = torch.norm(pred - gt, dim=-1) | |
delta1 = (dist_err < 0.25 * diameter).float().mean() | |
return delta1.item() | |
def boundary_f1(pred: torch.Tensor, gt: torch.Tensor, mask: torch.Tensor, radius: int = 1): | |
neighbor_x, neight_y = torch.meshgrid( | |
torch.linspace(-radius, radius, 2 * radius + 1, device=pred.device), | |
torch.linspace(-radius, radius, 2 * radius + 1, device=pred.device), | |
indexing='xy' | |
) | |
neighbor_mask = (neighbor_x ** 2 + neight_y ** 2) <= radius ** 2 + 1e-5 | |
pred_window = utils3d.torch.sliding_window_2d(pred, window_size=2 * radius + 1, stride=1, dim=(-2, -1)) # [H, W, 2*R+1, 2*R+1] | |
gt_window = utils3d.torch.sliding_window_2d(gt, window_size=2 * radius + 1, stride=1, dim=(-2, -1)) # [H, W, 2*R+1, 2*R+1] | |
mask_window = neighbor_mask & utils3d.torch.sliding_window_2d(mask, window_size=2 * radius + 1, stride=1, dim=(-2, -1)) # [H, W, 2*R+1, 2*R+1] | |
pred_rel = pred_window / pred[radius:-radius, radius:-radius, None, None] | |
gt_rel = gt_window / gt[radius:-radius, radius:-radius, None, None] | |
valid = mask[radius:-radius, radius:-radius, None, None] & mask_window | |
f1_list = [] | |
w_list = t_list = torch.linspace(0.05, 0.25, 10).tolist() | |
for t in t_list: | |
pred_label = pred_rel > 1 + t | |
gt_label = gt_rel > 1 + t | |
TP = (pred_label & gt_label & valid).float().sum() | |
precision = TP / (gt_label & valid).float().sum().clamp_min(1e-12) | |
recall = TP / (pred_label & valid).float().sum().clamp_min(1e-12) | |
f1 = 2 * precision * recall / (precision + recall).clamp_min(1e-12) | |
f1_list.append(f1.item()) | |
f1_avg = sum(w * f1 for w, f1 in zip(w_list, f1_list)) / sum(w_list) | |
return f1_avg | |
def compute_metrics( | |
pred: Dict[str, torch.Tensor], | |
gt: Dict[str, torch.Tensor], | |
vis: bool = False | |
) -> Tuple[Dict[str, Dict[str, Number]], Dict[str, torch.Tensor]]: | |
""" | |
A unified function to compute metrics for different types of predictions and ground truths. | |
#### Supported keys in pred: | |
- `disparity_affine_invariant`: disparity map predicted by a depth estimator with scale and shift invariant. | |
- `depth_scale_invariant`: depth map predicted by a depth estimator with scale invariant. | |
- `depth_affine_invariant`: depth map predicted by a depth estimator with scale and shift invariant. | |
- `depth_metric`: depth map predicted by a depth estimator with no scale or shift. | |
- `points_scale_invariant`: point map predicted by a point estimator with scale invariant. | |
- `points_affine_invariant`: point map predicted by a point estimator with scale and xyz shift invariant. | |
- `points_metric`: point map predicted by a point estimator with no scale or shift. | |
- `intrinsics`: normalized camera intrinsics matrix. | |
#### Required keys in gt: | |
- `depth`: depth map ground truth (in metric units if `depth_metric` is used) | |
- `points`: point map ground truth in camera coordinates. | |
- `mask`: mask indicating valid pixels in the ground truth. | |
- `intrinsics`: normalized ground-truth camera intrinsics matrix. | |
- `is_metric`: whether the depth is in metric units. | |
""" | |
metrics = {} | |
misc = {} | |
mask = gt['depth_mask'] | |
gt_depth = gt['depth'] | |
gt_points = gt['points'] | |
height, width = mask.shape[-2:] | |
_, lr_mask, lr_index = mask_aware_nearest_resize(None, mask, (64, 64), return_index=True) | |
only_depth = not any('point' in k for k in pred) | |
pred_depth_aligned, pred_points_aligned = None, None | |
# Metric depth | |
if 'depth_metric' in pred and gt['is_metric']: | |
pred_depth, gt_depth = pred['depth_metric'], gt['depth'] | |
metrics['depth_metric'] = { | |
'rel': rel_depth(pred_depth[mask], gt_depth[mask]), | |
'delta1': delta1_depth(pred_depth[mask], gt_depth[mask]) | |
} | |
if pred_depth_aligned is None: | |
pred_depth_aligned = pred_depth | |
# Scale-invariant depth | |
if 'depth_scale_invariant' in pred: | |
pred_depth_scale_invariant = pred['depth_scale_invariant'] | |
elif 'depth_metric' in pred: | |
pred_depth_scale_invariant = pred['depth_metric'] | |
else: | |
pred_depth_scale_invariant = None | |
if pred_depth_scale_invariant is not None: | |
pred_depth = pred_depth_scale_invariant | |
pred_depth_lr_masked, gt_depth_lr_masked = pred_depth[lr_index][lr_mask], gt_depth[lr_index][lr_mask] | |
scale = align_depth_scale(pred_depth_lr_masked, gt_depth_lr_masked, 1 / gt_depth_lr_masked) | |
pred_depth = pred_depth * scale | |
metrics['depth_scale_invariant'] = { | |
'rel': rel_depth(pred_depth[mask], gt_depth[mask]), | |
'delta1': delta1_depth(pred_depth[mask], gt_depth[mask]) | |
} | |
if pred_depth_aligned is None: | |
pred_depth_aligned = pred_depth | |
# Affine-invariant depth | |
if 'depth_affine_invariant' in pred: | |
pred_depth_affine_invariant = pred['depth_affine_invariant'] | |
elif 'depth_scale_invariant' in pred: | |
pred_depth_affine_invariant = pred['depth_scale_invariant'] | |
elif 'depth_metric' in pred: | |
pred_depth_affine_invariant = pred['depth_metric'] | |
else: | |
pred_depth_affine_invariant = None | |
if pred_depth_affine_invariant is not None: | |
pred_depth = pred_depth_affine_invariant | |
pred_depth_lr_masked, gt_depth_lr_masked = pred_depth[lr_index][lr_mask], gt_depth[lr_index][lr_mask] | |
scale, shift = align_depth_affine(pred_depth_lr_masked, gt_depth_lr_masked, 1 / gt_depth_lr_masked) | |
pred_depth = pred_depth * scale + shift | |
metrics['depth_affine_invariant'] = { | |
'rel': rel_depth(pred_depth[mask], gt_depth[mask]), | |
'delta1': delta1_depth(pred_depth[mask], gt_depth[mask]) | |
} | |
if pred_depth_aligned is None: | |
pred_depth_aligned = pred_depth | |
# Affine-invariant disparity | |
if 'disparity_affine_invariant' in pred: | |
pred_disparity_affine_invariant = pred['disparity_affine_invariant'] | |
elif 'depth_scale_invariant' in pred: | |
pred_disparity_affine_invariant = 1 / pred['depth_scale_invariant'] | |
elif 'depth_metric' in pred: | |
pred_disparity_affine_invariant = 1 / pred['depth_metric'] | |
else: | |
pred_disparity_affine_invariant = None | |
if pred_disparity_affine_invariant is not None: | |
pred_disp = pred_disparity_affine_invariant | |
scale, shift = align_affine_lstsq(pred_disp[mask], 1 / gt_depth[mask]) | |
pred_disp = pred_disp * scale + shift | |
# NOTE: The alignment is done on the disparity map could introduce extreme outliers at disparities close to 0. | |
# Therefore we clamp the disparities by minimum ground truth disparity. | |
pred_depth = 1 / pred_disp.clamp_min(1 / gt_depth[mask].max().item()) | |
metrics['disparity_affine_invariant'] = { | |
'rel': rel_depth(pred_depth[mask], gt_depth[mask]), | |
'delta1': delta1_depth(pred_depth[mask], gt_depth[mask]) | |
} | |
if pred_depth_aligned is None: | |
pred_depth_aligned = 1 / pred_disp.clamp_min(1e-6) | |
# Metric points | |
if 'points_metric' in pred and gt['is_metric']: | |
pred_points = pred['points_metric'] | |
pred_points_lr_masked, gt_points_lr_masked = pred_points[lr_index][lr_mask], gt_points[lr_index][lr_mask] | |
shift = align_points_xyz_shift(pred_points_lr_masked, gt_points_lr_masked, 1 / gt_points_lr_masked.norm(dim=-1)) | |
pred_points = pred_points + shift | |
metrics['points_metric'] = { | |
'rel': rel_point(pred_points[mask], gt_points[mask]), | |
'delta1': delta1_point(pred_points[mask], gt_points[mask]) | |
} | |
if pred_points_aligned is None: | |
pred_points_aligned = pred['points_metric'] | |
# Scale-invariant points (in camera space) | |
if 'points_scale_invariant' in pred: | |
pred_points_scale_invariant = pred['points_scale_invariant'] | |
elif 'points_metric' in pred: | |
pred_points_scale_invariant = pred['points_metric'] | |
else: | |
pred_points_scale_invariant = None | |
if pred_points_scale_invariant is not None: | |
pred_points = pred_points_scale_invariant | |
pred_points_lr_masked, gt_points_lr_masked = pred_points_scale_invariant[lr_index][lr_mask], gt_points[lr_index][lr_mask] | |
scale = align_points_scale(pred_points_lr_masked, gt_points_lr_masked, 1 / gt_points_lr_masked.norm(dim=-1)) | |
pred_points = pred_points * scale | |
metrics['points_scale_invariant'] = { | |
'rel': rel_point(pred_points[mask], gt_points[mask]), | |
'delta1': delta1_point(pred_points[mask], gt_points[mask]) | |
} | |
if vis and pred_points_aligned is None: | |
pred_points_aligned = pred['points_scale_invariant'] * scale | |
# Affine-invariant points | |
if 'points_affine_invariant' in pred: | |
pred_points_affine_invariant = pred['points_affine_invariant'] | |
elif 'points_scale_invariant' in pred: | |
pred_points_affine_invariant = pred['points_scale_invariant'] | |
elif 'points_metric' in pred: | |
pred_points_affine_invariant = pred['points_metric'] | |
else: | |
pred_points_affine_invariant = None | |
if pred_points_affine_invariant is not None: | |
pred_points = pred_points_affine_invariant | |
pred_points_lr_masked, gt_points_lr_masked = pred_points[lr_index][lr_mask], gt_points[lr_index][lr_mask] | |
scale, shift = align_points_scale_xyz_shift(pred_points_lr_masked, gt_points_lr_masked, 1 / gt_points_lr_masked.norm(dim=-1)) | |
pred_points = pred_points * scale + shift | |
metrics['points_affine_invariant'] = { | |
'rel': rel_point(pred_points[mask], gt_points[mask]), | |
'delta1': delta1_point(pred_points[mask], gt_points[mask]) | |
} | |
if vis and pred_points_aligned is None: | |
pred_points_aligned = pred['points_affine_invariant'] * scale + shift | |
# Local points | |
if 'segmentation_mask' in gt and 'points' in gt and any('points' in k for k in pred.keys()): | |
pred_points = next(pred[k] for k in pred.keys() if 'points' in k) | |
gt_points = gt['points'] | |
segmentation_mask = gt['segmentation_mask'] | |
segmentation_labels = gt['segmentation_labels'] | |
segmentation_mask_lr = segmentation_mask[lr_index] | |
local_points_metrics = [] | |
for _, seg_id in segmentation_labels.items(): | |
valid_mask = (segmentation_mask == seg_id) & mask | |
pred_points_masked = pred_points[valid_mask] | |
gt_points_masked = gt_points[valid_mask] | |
valid_mask_lr = (segmentation_mask_lr == seg_id) & lr_mask | |
if valid_mask_lr.sum().item() < 10: | |
continue | |
pred_points_masked_lr = pred_points[lr_index][valid_mask_lr] | |
gt_points_masked_lr = gt_points[lr_index][valid_mask_lr] | |
diameter = (gt_points_masked.max(dim=0).values - gt_points_masked.min(dim=0).values).max() | |
scale, shift = align_points_scale_xyz_shift(pred_points_masked_lr, gt_points_masked_lr, 1 / diameter.expand(gt_points_masked_lr.shape[0])) | |
pred_points_masked = pred_points_masked * scale + shift | |
local_points_metrics.append({ | |
'rel': rel_point_local(pred_points_masked, gt_points_masked, diameter), | |
'delta1': delta1_point_local(pred_points_masked, gt_points_masked, diameter), | |
}) | |
metrics['local_points'] = key_average(local_points_metrics) | |
# FOV. NOTE: If there is no random augmentation applied to the input images, all GT FOV are generallly the same. | |
# Fair evaluation of FOV requires random augmentation. | |
if 'intrinsics' in pred and 'intrinsics' in gt: | |
pred_intrinsics = pred['intrinsics'] | |
gt_intrinsics = gt['intrinsics'] | |
pred_fov_x, pred_fov_y = intrinsics_to_fov(pred_intrinsics) | |
gt_fov_x, gt_fov_y = intrinsics_to_fov(gt_intrinsics) | |
metrics['fov_x'] = { | |
'mae': torch.rad2deg(pred_fov_x - gt_fov_x).abs().mean().item(), | |
'deviation': torch.rad2deg(pred_fov_x - gt_fov_x).item(), | |
} | |
# Boundary F1 | |
if pred_depth_aligned is not None and gt['has_sharp_boundary']: | |
metrics['boundary'] = { | |
'radius1_f1': boundary_f1(pred_depth_aligned, gt_depth, mask, radius=1), | |
'radius2_f1': boundary_f1(pred_depth_aligned, gt_depth, mask, radius=2), | |
'radius3_f1': boundary_f1(pred_depth_aligned, gt_depth, mask, radius=3), | |
} | |
if vis: | |
if pred_points_aligned is not None: | |
misc['pred_points'] = pred_points_aligned | |
if only_depth: | |
misc['pred_points'] = utils3d.torch.depth_to_points(pred_depth_aligned, intrinsics=gt['intrinsics']) | |
if pred_depth_aligned is not None: | |
misc['pred_depth'] = pred_depth_aligned | |
return metrics, misc |