xiaoyuxi
fix_readme
d762d4a
import pycolmap
from models.SpaTrackV2.models.predictor import Predictor
import yaml
import easydict
import os
import numpy as np
import cv2
import torch
import torchvision.transforms as T
from PIL import Image
import io
import moviepy.editor as mp
from models.SpaTrackV2.utils.visualizer import Visualizer
import tqdm
from models.SpaTrackV2.models.utils import get_points_on_a_grid
import glob
from rich import print
import argparse
import decord
from huggingface_hub import hf_hub_download
config = {
"ckpt_dir": "Yuxihenry/SpatialTracker_Files", # HuggingFace repo ID
"cfg_dir": "config/magic_infer_moge.yaml",
}
def get_tracker_predictor(output_dir: str, vo_points: int = 756):
"""
Initialize and return the tracker predictor and visualizer
Args:
output_dir: Directory to save visualization results
vo_points: Number of points for visual odometry
Returns:
Tuple of (tracker_predictor, visualizer)
"""
viz = True
os.makedirs(output_dir, exist_ok=True)
with open(config["cfg_dir"], "r") as f:
cfg = yaml.load(f, Loader=yaml.FullLoader)
cfg = easydict.EasyDict(cfg)
cfg.out_dir = output_dir
cfg.model.track_num = vo_points
# Check if it's a local path or HuggingFace repo
if os.path.exists(config["ckpt_dir"]):
# Local file
model = Predictor.from_pretrained(config["ckpt_dir"], model_cfg=cfg["model"])
else:
# HuggingFace repo - download the model
print(f"Downloading model from HuggingFace: {config['ckpt_dir']}")
checkpoint_path = hf_hub_download(
repo_id=config["ckpt_dir"],
repo_type="model",
filename="SpaTrack3_offline.pth"
)
model = Predictor.from_pretrained(checkpoint_path, model_cfg=cfg["model"])
model.eval()
model.to("cuda")
viser = Visualizer(save_dir=cfg.out_dir, grayscale=True,
fps=10, pad_value=0, tracks_leave_trace=5)
return model, viser
def run_tracker(model, viser, temp_dir, video_name, grid_size, vo_points, fps=3):
"""
Run tracking on a video sequence
Args:
model: Tracker predictor instance
viser: Visualizer instance
temp_dir: Directory containing temporary files
video_name: Name of the video file (without extension)
grid_size: Size of the tracking grid
vo_points: Number of points for visual odometry
fps: Frames per second for visualization
"""
# Setup paths
video_path = os.path.join(temp_dir, f"{video_name}.mp4")
mask_path = os.path.join(temp_dir, f"{video_name}.png")
out_dir = os.path.join(temp_dir, "results")
os.makedirs(out_dir, exist_ok=True)
# Load video using decord
video_reader = decord.VideoReader(video_path)
video_tensor = torch.from_numpy(video_reader.get_batch(range(len(video_reader))).asnumpy()).permute(0, 3, 1, 2) # Convert to tensor and permute to (N, C, H, W)
# resize make sure the shortest side is 336
h, w = video_tensor.shape[2:]
scale = max(336 / h, 336 / w)
if scale < 1:
new_h, new_w = int(h * scale), int(w * scale)
video_tensor = T.Resize((new_h, new_w))(video_tensor)
video_tensor = video_tensor[::fps].float()
depth_tensor = None
intrs = None
extrs = None
data_npz_load = {}
# Load and process mask
if os.path.exists(mask_path):
mask = cv2.imread(mask_path)
mask = cv2.resize(mask, (video_tensor.shape[3], video_tensor.shape[2]))
mask = mask.sum(axis=-1)>0
else:
mask = np.ones_like(video_tensor[0,0].numpy())>0
# Get frame dimensions and create grid points
frame_H, frame_W = video_tensor.shape[2:]
grid_pts = get_points_on_a_grid(grid_size, (frame_H, frame_W), device="cpu")
# Sample mask values at grid points and filter out points where mask=0
if os.path.exists(mask_path):
grid_pts_int = grid_pts[0].long()
mask_values = mask[grid_pts_int[...,1], grid_pts_int[...,0]]
grid_pts = grid_pts[:, mask_values]
query_xyt = torch.cat([torch.zeros_like(grid_pts[:, :, :1]), grid_pts], dim=2)[0].numpy()
# Run model inference
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
(
c2w_traj, intrs, point_map, conf_depth,
track3d_pred, track2d_pred, vis_pred, conf_pred, video
) = model.forward(video_tensor, depth=depth_tensor,
intrs=intrs, extrs=extrs,
queries=query_xyt,
fps=1, full_point=False, iters_track=4,
query_no_BA=True, fixed_cam=False, stage=1,
support_frame=len(video_tensor)-1, replace_ratio=0.2)
# Resize results to avoid too large I/O Burden
max_size = 336
h, w = video.shape[2:]
scale = min(max_size / h, max_size / w)
if scale < 1:
new_h, new_w = int(h * scale), int(w * scale)
video = T.Resize((new_h, new_w))(video)
video_tensor = T.Resize((new_h, new_w))(video_tensor)
point_map = T.Resize((new_h, new_w))(point_map)
track2d_pred[...,:2] = track2d_pred[...,:2] * scale
intrs[:,:2,:] = intrs[:,:2,:] * scale
if depth_tensor is not None:
depth_tensor = T.Resize((new_h, new_w))(depth_tensor)
conf_depth = T.Resize((new_h, new_w))(conf_depth)
# Visualize tracks
viser.visualize(video=video[None],
tracks=track2d_pred[None][...,:2],
visibility=vis_pred[None],filename="test")
# Save in tapip3d format
data_npz_load["coords"] = (torch.einsum("tij,tnj->tni", c2w_traj[:,:3,:3], track3d_pred[:,:,:3].cpu()) + c2w_traj[:,:3,3][:,None,:]).numpy()
data_npz_load["extrinsics"] = torch.inverse(c2w_traj).cpu().numpy()
data_npz_load["intrinsics"] = intrs.cpu().numpy()
data_npz_load["depths"] = point_map[:,2,...].cpu().numpy()
data_npz_load["video"] = (video_tensor).cpu().numpy()/255
data_npz_load["visibs"] = vis_pred.cpu().numpy()
data_npz_load["confs"] = conf_pred.cpu().numpy()
data_npz_load["confs_depth"] = conf_depth.cpu().numpy()
np.savez(os.path.join(out_dir, f'result.npz'), **data_npz_load)
print(f"Results saved to {out_dir}.\nTo visualize them with tapip3d, run: [bold yellow]python tapip3d_viz.py {out_dir}/result.npz[/bold yellow]")