Spaces:
Running
on
Zero
Running
on
Zero
import gc | |
import numpy as np | |
import torch | |
from segment_anything import SamPredictor, sam_model_registry | |
# Try to import HF SAM support | |
try: | |
from app_3rd.sam_utils.hf_sam_predictor import get_hf_sam_predictor, HFSamPredictor | |
HF_AVAILABLE = True | |
except ImportError: | |
HF_AVAILABLE = False | |
models = { | |
'vit_b': 'app_3rd/sam_utils/checkpoints/sam_vit_b_01ec64.pth', | |
'vit_l': 'app_3rd/sam_utils/checkpoints/sam_vit_l_0b3195.pth', | |
'vit_h': 'app_3rd/sam_utils/checkpoints/sam_vit_h_4b8939.pth' | |
} | |
def get_sam_predictor(model_type='vit_b', device=None, image=None, use_hf=True): | |
""" | |
Get SAM predictor with option to use HuggingFace version | |
Args: | |
model_type: Model type ('vit_b', 'vit_l', 'vit_h') | |
device: Device to run on | |
image: Optional image to set immediately | |
use_hf: Whether to use HuggingFace SAM instead of original SAM | |
""" | |
if use_hf: | |
if not HF_AVAILABLE: | |
raise ImportError("HuggingFace SAM not available. Install transformers and huggingface_hub.") | |
return get_hf_sam_predictor(model_type, device, image) | |
# Original SAM logic | |
if device is None and torch.cuda.is_available(): | |
device = 'cuda' | |
elif device is None: | |
device = 'cpu' | |
# sam model | |
sam = sam_model_registry[model_type](checkpoint=models[model_type]) | |
sam = sam.to(device) | |
predictor = SamPredictor(sam) | |
if image is not None: | |
predictor.set_image(image) | |
return predictor | |
def run_inference(predictor, input_x, selected_points, multi_object: bool = False): | |
""" | |
Run inference with either original SAM or HF SAM predictor | |
Args: | |
predictor: SamPredictor or HFSamPredictor instance | |
input_x: Input image | |
selected_points: List of (point, label) tuples | |
multi_object: Whether to handle multiple objects | |
""" | |
if len(selected_points) == 0: | |
return [] | |
# Check if using HF SAM | |
if isinstance(predictor, HFSamPredictor): | |
return _run_hf_inference(predictor, input_x, selected_points, multi_object) | |
else: | |
return _run_original_inference(predictor, input_x, selected_points, multi_object) | |
def _run_original_inference(predictor: SamPredictor, input_x, selected_points, multi_object: bool = False): | |
"""Run inference with original SAM""" | |
points = torch.Tensor( | |
[p for p, _ in selected_points] | |
).to(predictor.device).unsqueeze(1) | |
labels = torch.Tensor( | |
[int(l) for _, l in selected_points] | |
).to(predictor.device).unsqueeze(1) | |
transformed_points = predictor.transform.apply_coords_torch( | |
points, input_x.shape[:2]) | |
masks, scores, logits = predictor.predict_torch( | |
point_coords=transformed_points[:,0][None], | |
point_labels=labels[:,0][None], | |
multimask_output=False, | |
) | |
masks = masks[0].cpu().numpy() # N 1 H W N is the number of points | |
gc.collect() | |
torch.cuda.empty_cache() | |
return [(masks, 'final_mask')] | |
def _run_hf_inference(predictor: HFSamPredictor, input_x, selected_points, multi_object: bool = False): | |
"""Run inference with HF SAM""" | |
# Prepare points and labels for HF SAM | |
select_pts = [[list(p) for p, _ in selected_points]] | |
select_lbls = [[int(l) for _, l in selected_points]] | |
# Preprocess inputs | |
inputs = predictor.preprocess(input_x, select_pts, select_lbls) | |
# Run inference | |
with torch.no_grad(): | |
outputs = predictor.model(**inputs) | |
# Post-process masks | |
masks = predictor.processor.image_processor.post_process_masks( | |
outputs.pred_masks.cpu(), | |
inputs["original_sizes"].cpu(), | |
inputs["reshaped_input_sizes"].cpu(), | |
) | |
masks = masks[0][:,:1,...].cpu().numpy() | |
gc.collect() | |
torch.cuda.empty_cache() | |
return [(masks, 'final_mask')] |