SpatialTracker2 / app.py
Yuxihenry's picture
return initial model initalization logic (#2)
0e9b611 verified
# Import spaces for ZeroGPU support
try:
import spaces
except ImportError:
# Fallback for local development
def spaces(func):
return func
import os
import sys
import logging
import time
import uuid
import atexit
from concurrent.futures import ThreadPoolExecutor
from typing import Union
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Import other dependencies
import subprocess
import cv2
import gradio as gr
import numpy as np
import threading
import subprocess
import tempfile
import shutil
import glob
import json
import base64
import struct
import zlib
import argparse
import socket
import gc
from typing import List
from pathlib import Path
from einops import rearrange
from tempfile import TemporaryDirectory
from http.server import SimpleHTTPRequestHandler
from socketserver import ThreadingTCPServer
import socketserver
import http.server
import torch
from pathlib import Path
# Determine device
device = "cuda"
# Import custom modules with error handling
try:
from app_3rd.sam_utils.inference import SamPredictor, get_sam_predictor, run_inference
from app_3rd.spatrack_utils.infer_track import get_tracker_predictor, run_tracker, get_points_on_a_grid
except ImportError as e:
logger.error(f"Failed to import custom modules: {e}")
raise
MAX_FRAMES = 80
# Thread pool for delayed deletion
thread_pool_executor = ThreadPoolExecutor(max_workers=2)
def delete_later(path: Union[str, os.PathLike], delay: int = 600):
"""Delete file or directory after specified delay (default 10 minutes)"""
def _delete():
try:
if os.path.isfile(path):
os.remove(path)
elif os.path.isdir(path):
shutil.rmtree(path)
except Exception as e:
logger.warning(f"Failed to delete {path}: {e}")
def _wait_and_delete():
time.sleep(delay)
_delete()
thread_pool_executor.submit(_wait_and_delete)
atexit.register(_delete)
def create_user_temp_dir():
"""Create a unique temporary directory for each user session"""
session_id = str(uuid.uuid4())[:8] # Short unique ID
temp_dir = os.path.join("temp", f"session_{session_id}")
os.makedirs(temp_dir, exist_ok=True)
# Schedule deletion after 10 minutes
delete_later(temp_dir, delay=600)
return temp_dir
# Wrap the core GPU functions with @spaces.GPU
@spaces.GPU
def gpu_run_inference(predictor_arg, image, points, boxes):
"""GPU-accelerated SAM inference"""
# Initialize SAM predictor inside GPU function if needed
if predictor_arg is None:
print("Initializing SAM predictor inside GPU function...")
predictor_arg = get_sam_predictor()
# Ensure the underlying model of the predictor is on the GPU.
try:
if hasattr(predictor_arg, 'model'):
predictor_arg.model = predictor_arg.model.to("cuda")
except Exception as e:
print(f"Warning: Could not move SAM model to GPU: {e}")
return run_inference(predictor_arg, image, points, boxes)
@spaces.GPU
def gpu_run_tracker(tracker_model_arg, tracker_viser_arg, temp_dir, video_name, grid_size, vo_points, fps):
"""GPU-accelerated tracking"""
import torchvision.transforms as T
import decord
# Initialize tracker model inside GPU function if needed
if tracker_model_arg is None or tracker_viser_arg is None:
print("Initializing tracker models inside GPU function...")
out_dir = os.path.join(temp_dir, "results")
os.makedirs(out_dir, exist_ok=True)
tracker_model_arg, tracker_viser_arg = get_tracker_predictor(out_dir, vo_points=vo_points)
# Setup paths
video_path = os.path.join(temp_dir, f"{video_name}.mp4")
mask_path = os.path.join(temp_dir, f"{video_name}.png")
out_dir = os.path.join(temp_dir, "results")
os.makedirs(out_dir, exist_ok=True)
# Load video using decord
video_reader = decord.VideoReader(video_path)
video_tensor = torch.from_numpy(video_reader.get_batch(range(len(video_reader))).asnumpy()).permute(0, 3, 1, 2) # Convert to tensor and permute to (N, C, H, W)
# resize make sure the shortest side is 336
h, w = video_tensor.shape[2:]
scale = max(336 / h, 336 / w)
if scale < 1:
new_h, new_w = int(h * scale), int(w * scale)
video_tensor = T.Resize((new_h, new_w))(video_tensor)
video_tensor = video_tensor[::fps].float()[:MAX_FRAMES]
# Move video tensor to GPU
video_tensor = video_tensor.cuda()
print(f"Video tensor shape: {video_tensor.shape}, device: {video_tensor.device}")
depth_tensor = None
intrs = None
extrs = None
data_npz_load = {}
# Load and process mask
if os.path.exists(mask_path):
mask = cv2.imread(mask_path)
mask = cv2.resize(mask, (video_tensor.shape[3], video_tensor.shape[2]))
mask = mask.sum(axis=-1)>0
else:
mask = np.ones_like(video_tensor[0,0].cpu().numpy())>0
grid_size = 10
# Get frame dimensions and create grid points
frame_H, frame_W = video_tensor.shape[2:]
grid_pts = get_points_on_a_grid(grid_size, (frame_H, frame_W), device="cuda") # Create on GPU
# Sample mask values at grid points and filter out points where mask=0
if os.path.exists(mask_path):
grid_pts_int = grid_pts[0].long()
mask_values = mask[grid_pts_int.cpu()[...,1], grid_pts_int.cpu()[...,0]]
grid_pts = grid_pts[:, mask_values]
query_xyt = torch.cat([torch.zeros_like(grid_pts[:, :, :1]), grid_pts], dim=2)[0].cpu().numpy()
print(f"Query points shape: {query_xyt.shape}")
# Run model inference
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
(
c2w_traj, intrs, point_map, conf_depth,
track3d_pred, track2d_pred, vis_pred, conf_pred, video
) = tracker_model_arg.forward(video_tensor, depth=depth_tensor,
intrs=intrs, extrs=extrs,
queries=query_xyt,
fps=1, full_point=False, iters_track=4,
query_no_BA=True, fixed_cam=False, stage=1,
support_frame=len(video_tensor)-1, replace_ratio=0.2)
# Resize results to avoid too large I/O Burden
max_size = 336
h, w = video.shape[2:]
scale = min(max_size / h, max_size / w)
if scale < 1:
new_h, new_w = int(h * scale), int(w * scale)
video = T.Resize((new_h, new_w))(video)
video_tensor = T.Resize((new_h, new_w))(video_tensor)
point_map = T.Resize((new_h, new_w))(point_map)
track2d_pred[...,:2] = track2d_pred[...,:2] * scale
intrs[:,:2,:] = intrs[:,:2,:] * scale
conf_depth = T.Resize((new_h, new_w))(conf_depth)
# Visualize tracks
tracker_viser_arg.visualize(video=video[None],
tracks=track2d_pred[None][...,:2],
visibility=vis_pred[None],filename="test")
# Save in tapip3d format
data_npz_load["coords"] = (torch.einsum("tij,tnj->tni", c2w_traj[:,:3,:3], track3d_pred[:,:,:3].cpu()) + c2w_traj[:,:3,3][:,None,:]).numpy()
data_npz_load["extrinsics"] = torch.inverse(c2w_traj).cpu().numpy()
data_npz_load["intrinsics"] = intrs.cpu().numpy()
data_npz_load["depths"] = point_map[:,2,...].cpu().numpy()
data_npz_load["video"] = (video_tensor).cpu().numpy()/255
data_npz_load["visibs"] = vis_pred.cpu().numpy()
data_npz_load["confs"] = conf_pred.cpu().numpy()
data_npz_load["confs_depth"] = conf_depth.cpu().numpy()
np.savez(os.path.join(out_dir, f'result.npz'), **data_npz_load)
return None
# Constants
COLORS = [(0, 0, 255), (0, 255, 255)] # BGR: Red for negative, Yellow for positive
MARKERS = [1, 5] # Cross for negative, Star for positive
MARKER_SIZE = 8 # Increased marker size
VIZ_SCRIPT = "tapip3d_viz.py"
TRACK_SCRIPT = "inference.py"
# VIZ_HTML = "temp/3d_viz.html"
VIZ_HTML = "debug.html"
VIZ_PORT = 9089
# Sample videos for gallery (you can add your own sample videos here)
EXAMPLE_VIDEOS = [
# Add paths to your example videos here
{"name": "kiss", "path": "examples/kiss.mp4", "grid_size": 45, "vo_points": 700, "fps": 10},
{"name": "backpack", "path": "examples/backpack.mp4", "grid_size": 40, "vo_points": 600, "fps": 2},
{"name": "kitchen", "path": "examples/kitchen.mp4", "grid_size": 60, "vo_points": 800, "fps": 3},
{"name": "pillow", "path": "examples/pillow.mp4", "grid_size": 35, "vo_points": 500, "fps": 2},
{"name": "biker", "path": "examples/biker.mp4", "grid_size": 45, "vo_points": 700, "fps": 2},
{"name": "running", "path": "examples/running.mp4", "grid_size": 45, "vo_points": 700, "fps": 2},
{"name": "drifting", "path": "examples/drifting.mp4", "grid_size": 35, "vo_points": 1000, "fps": 6},
{"name": "ball", "path": "examples/ball.mp4", "grid_size": 45, "vo_points": 700, "fps": 2},
{"name": "dancer", "path": "examples/dancer.mp4", "grid_size": 45, "vo_points": 700, "fps": 2},
{"name": "skate_sunset", "path": "examples/skate_sunset.mp4", "grid_size": 25, "vo_points": 1800, "fps": 6},
{"name": "ego_kc1", "path": "examples/ego_kc1.mp4", "grid_size": 45, "vo_points": 500, "fps": 4},
{"name": "vertical_place", "path": "examples/vertical_place.mp4", "grid_size": 45, "vo_points": 500, "fps": 3},
{"name": "droid_robot", "path": "examples/droid_robot.mp4", "grid_size": 35, "vo_points": 400, "fps": 8},
]
gr.set_static_paths(paths=[Path.cwd().absolute()/"_viz"])
def compress_and_write(filename, header, blob):
header_bytes = json.dumps(header).encode("utf-8")
header_len = struct.pack("<I", len(header_bytes))
with open(filename, "wb") as f:
f.write(header_len)
f.write(header_bytes)
f.write(blob)
def process_point_cloud_data(npz_file, width=256, height=192, fps=4):
fixed_size = (width, height)
data = np.load(npz_file)
extrinsics = data["extrinsics"]
intrinsics = data["intrinsics"]
trajs = data["coords"]
T, C, H, W = data["video"].shape
fx = intrinsics[0, 0, 0]
fy = intrinsics[0, 1, 1]
fov_y = 2 * np.arctan(H / (2 * fy)) * (180 / np.pi)
fov_x = 2 * np.arctan(W / (2 * fx)) * (180 / np.pi)
original_aspect_ratio = (W / fx) / (H / fy)
rgb_video = (rearrange(data["video"], "T C H W -> T H W C") * 255).astype(np.uint8)
rgb_video = np.stack([cv2.resize(frame, fixed_size, interpolation=cv2.INTER_AREA)
for frame in rgb_video])
depth_video = data["depths"].astype(np.float32)
if "confs_depth" in data.keys():
confs = (data["confs_depth"].astype(np.float32) > 0.5).astype(np.float32)
depth_video = depth_video * confs
depth_video = np.stack([cv2.resize(frame, fixed_size, interpolation=cv2.INTER_NEAREST)
for frame in depth_video])
scale_x = fixed_size[0] / W
scale_y = fixed_size[1] / H
intrinsics = intrinsics.copy()
intrinsics[:, 0, :] *= scale_x
intrinsics[:, 1, :] *= scale_y
min_depth = float(depth_video.min()) * 0.8
max_depth = float(depth_video.max()) * 1.5
depth_normalized = (depth_video - min_depth) / (max_depth - min_depth)
depth_int = (depth_normalized * ((1 << 16) - 1)).astype(np.uint16)
depths_rgb = np.zeros((T, fixed_size[1], fixed_size[0], 3), dtype=np.uint8)
depths_rgb[:, :, :, 0] = (depth_int & 0xFF).astype(np.uint8)
depths_rgb[:, :, :, 1] = ((depth_int >> 8) & 0xFF).astype(np.uint8)
first_frame_inv = np.linalg.inv(extrinsics[0])
normalized_extrinsics = np.array([first_frame_inv @ ext for ext in extrinsics])
normalized_trajs = np.zeros_like(trajs)
for t in range(T):
homogeneous_trajs = np.concatenate([trajs[t], np.ones((trajs.shape[1], 1))], axis=1)
transformed_trajs = (first_frame_inv @ homogeneous_trajs.T).T
normalized_trajs[t] = transformed_trajs[:, :3]
arrays = {
"rgb_video": rgb_video,
"depths_rgb": depths_rgb,
"intrinsics": intrinsics,
"extrinsics": normalized_extrinsics,
"inv_extrinsics": np.linalg.inv(normalized_extrinsics),
"trajectories": normalized_trajs.astype(np.float32),
"cameraZ": 0.0
}
header = {}
blob_parts = []
offset = 0
for key, arr in arrays.items():
arr = np.ascontiguousarray(arr)
arr_bytes = arr.tobytes()
header[key] = {
"dtype": str(arr.dtype),
"shape": arr.shape,
"offset": offset,
"length": len(arr_bytes)
}
blob_parts.append(arr_bytes)
offset += len(arr_bytes)
raw_blob = b"".join(blob_parts)
compressed_blob = zlib.compress(raw_blob, level=9)
header["meta"] = {
"depthRange": [min_depth, max_depth],
"totalFrames": int(T),
"resolution": fixed_size,
"baseFrameRate": fps,
"numTrajectoryPoints": normalized_trajs.shape[1],
"fov": float(fov_y),
"fov_x": float(fov_x),
"original_aspect_ratio": float(original_aspect_ratio),
"fixed_aspect_ratio": float(fixed_size[0]/fixed_size[1])
}
# Use a temporary file to avoid race conditions with data.bin
temp_bin_file = None
try:
# Create a temporary file path
with tempfile.NamedTemporaryFile(suffix=".bin", delete=False) as f:
temp_bin_file = f.name
# Write to the temporary file
compress_and_write(temp_bin_file, header, compressed_blob)
# Read the content and encode it
with open(temp_bin_file, "rb") as f:
encoded_blob = base64.b64encode(f.read()).decode("ascii")
finally:
# Clean up the temporary file
if temp_bin_file and os.path.exists(temp_bin_file):
os.unlink(temp_bin_file)
# generate a random path
import time
random_path = f'./_viz/_{time.time()}.html'
with open('./_viz/viz_template.html') as f:
html_template = f.read()
html_out = html_template.replace(
"<head>",
f"<head>\n<script>window.embeddedBase64 = `{encoded_blob}`;</script>"
)
with open(random_path,'w') as f:
f.write(html_out)
return random_path
def numpy_to_base64(arr):
"""Convert numpy array to base64 string"""
return base64.b64encode(arr.tobytes()).decode('utf-8')
def base64_to_numpy(b64_str, shape, dtype):
"""Convert base64 string back to numpy array"""
return np.frombuffer(base64.b64decode(b64_str), dtype=dtype).reshape(shape)
def get_video_name(video_path):
"""Extract video name without extension"""
return os.path.splitext(os.path.basename(video_path))[0]
def handle_video_upload(video):
"""Handle video upload and extract first frame"""
if video is None:
return None, None, []
# Create user-specific temporary directory
user_temp_dir = create_user_temp_dir()
# Get original video name
if isinstance(video, str):
video_name = get_video_name(video)
video_path = os.path.join(user_temp_dir, f"{video_name}.mp4")
shutil.copy(video, video_path)
else:
video_name = get_video_name(video.name)
video_path = os.path.join(user_temp_dir, f"{video_name}.mp4")
with open(video_path, 'wb') as f:
f.write(video.read())
print(f"Video saved to: {video_path}")
cap = cv2.VideoCapture(video_path)
success, frame = cap.read()
cap.release()
if not success:
return None, None, []
# Resize frame to have minimum side length of 336
h, w = frame.shape[:2]
scale = 336 / min(h, w)
new_h, new_w = int(h * scale)//2*2, int(w * scale)//2*2
frame = cv2.resize(frame, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Convert frame to base64 string for storage, include temp_dir info
frame_data = {
'data': numpy_to_base64(frame),
'shape': frame.shape,
'dtype': str(frame.dtype),
'temp_dir': user_temp_dir # Store temp directory path
}
return json.dumps(frame_data), frame, []
def save_masks(o_masks, video_name, temp_dir):
"""Save binary masks to files in user-specific temp directory"""
o_files = []
for mask, _ in o_masks:
o_mask = np.uint8(mask.squeeze() * 255)
o_file = os.path.join(temp_dir, f"{video_name}.png")
cv2.imwrite(o_file, o_mask)
o_files.append(o_file)
return o_files
def select_point(original_img: str, sel_pix: list, point_type: str, evt: gr.SelectData):
"""Handle point selection for SAM"""
if original_img is None:
return None, []
# Convert stored image data back to numpy array
frame_data = json.loads(original_img)
original_img = base64_to_numpy(frame_data['data'], frame_data['shape'], frame_data['dtype'])
temp_dir = frame_data.get('temp_dir', 'temp') # Get user-specific temp dir
# Create a display image for visualization
display_img = original_img.copy()
# Create a new list instead of modifying the existing one
new_sel_pix = sel_pix.copy() if sel_pix else []
new_sel_pix.append((evt.index, 1 if point_type == 'positive_point' else 0))
# Pass None to force initialization inside GPU function
o_masks = gpu_run_inference(None, original_img, new_sel_pix, [])
# Draw points on display image
for point, label in new_sel_pix:
cv2.drawMarker(display_img, point, COLORS[label], markerType=MARKERS[label], markerSize=MARKER_SIZE, thickness=2)
# Draw mask overlay on display image
if o_masks:
# Get the final mask (which is already processed as pos_mask - neg_mask)
mask = o_masks[0][0] # Get first mask
# Create a light blue overlay
overlay = display_img.copy()
overlay[mask.squeeze()!=0] = [20, 60, 200] # Light blue in BGR
# Blend with original image with lower alpha
display_img = cv2.addWeighted(overlay, 0.6, display_img, 0.4, 0)
# Get video name from the video file in user's temp directory
video_files = glob.glob(os.path.join(temp_dir, "*.mp4"))
if video_files:
video_name = get_video_name(video_files[0])
save_masks(o_masks, video_name, temp_dir)
return display_img, new_sel_pix
def reset_points(original_img: str, sel_pix):
"""Reset all points and clear the mask"""
if original_img is None:
return None, []
# Convert stored image data back to numpy array
frame_data = json.loads(original_img)
original_img = base64_to_numpy(frame_data['data'], frame_data['shape'], frame_data['dtype'])
temp_dir = frame_data.get('temp_dir', 'temp') # Get user-specific temp dir
# Create a display image for visualization (just the original image)
display_img = original_img.copy()
# Clear all points
new_sel_pix = []
# Clear any existing masks in user's temp directory
for mask_file in glob.glob(os.path.join(temp_dir, "*.png")):
try:
os.remove(mask_file)
except Exception as e:
logger.warning(f"Failed to remove mask file {mask_file}: {e}")
return display_img, new_sel_pix
def run_tracker_and_save(video_path, mask_path, grid_size, vo_points, fps, temp_dir):
"""Run tracker on video with mask and save result"""
# Get video name for output file
video_name = get_video_name(video_path)
out_dir = os.path.join(temp_dir, "results")
os.makedirs(out_dir, exist_ok=True)
# Pass None to force initialization inside GPU function
gpu_run_tracker(None, None, temp_dir, video_name, grid_size, vo_points, fps)
# Return paths for visualization
npz_path = os.path.join(out_dir, "result.npz")
track2d_video = os.path.join(out_dir, "test_pred_track.mp4")
html_out_path = process_point_cloud_data(npz_path)
# Schedule deletion of generated files
delete_later(html_out_path, delay=600)
if os.path.exists(track2d_video):
delete_later(track2d_video, delay=600)
if os.path.exists(npz_path):
delete_later(npz_path, delay=600)
return html_out_path, track2d_video
def launch_viz(grid_size, vo_points, fps, original_image_state):
"""Launch visualization with user-specific temp directory"""
if original_image_state is None:
return None, None
# Get user's temp directory from stored frame data
try:
frame_data = json.loads(original_image_state)
temp_dir = frame_data.get('temp_dir', 'temp')
except:
temp_dir = 'temp' # Fallback
mask_files = glob.glob(os.path.join(temp_dir, "*.png"))
if not mask_files:
mask_files = [None]
video_files = glob.glob(os.path.join(temp_dir, "*.mp4"))
if not video_files:
return None, None
video_path = video_files[0]
html_path, track2d_video = run_tracker_and_save(video_path, mask_files[0], grid_size, vo_points, fps, temp_dir)
# iframe src through HTTP
iframe_html = f"""
<div style='border: 3px solid #3b82f6; border-radius: 10px; overflow: hidden; box-shadow: 0 8px 32px rgba(59, 130, 246, 0.3);'>
<iframe id="viz_iframe" src="/gradio_api/file={html_path}" width="100%" height="950px" style="border:none;"></iframe>
</div>
"""
return iframe_html, track2d_video
def clear_all():
"""Clear all buffers and temporary files - simplified for Spaces"""
return None, None, []
# Build UI
with gr.Blocks(css="""
#advanced_settings .wrap {
font-size: 14px !important;
}
#advanced_settings .gr-slider {
font-size: 13px !important;
}
#advanced_settings .gr-slider .gr-label {
font-size: 13px !important;
margin-bottom: 5px !important;
}
#advanced_settings .gr-slider .gr-info {
font-size: 12px !important;
}
#point_label_radio .gr-radio-group {
flex-direction: row !important;
gap: 15px !important;
}
#point_label_radio .gr-radio-group label {
margin-right: 0 !important;
margin-bottom: 0 !important;
}
/* Style for example videos label */
.gr-examples .gr-label {
font-weight: bold !important;
font-size: 16px !important;
}
/* Simple horizontal scroll for examples */
.gr-examples .gr-table-wrapper {
overflow-x: auto !important;
overflow-y: hidden !important;
}
.gr-examples .gr-table {
display: flex !important;
flex-wrap: nowrap !important;
min-width: max-content !important;
}
.gr-examples .gr-table tbody {
display: flex !important;
flex-direction: row !important;
flex-wrap: nowrap !important;
}
.gr-examples .gr-table tbody tr {
display: flex !important;
flex-direction: column !important;
min-width: 150px !important;
margin-right: 10px !important;
}
.gr-examples .gr-table tbody tr td {
text-align: center !important;
padding: 5px !important;
}
""") as demo:
# Initialize states inside Blocks - remove predictor from State since it can't be pickled
selected_points = gr.State([])
original_image_state = gr.State() # Store original image in state
with gr.Row():
gr.Markdown("""
# ✨ SpatialTrackerV2
<div style='background-color: #eff6ff; padding: 20px; border-radius: 10px; margin: 10px 0;'>
<p style='font-size: 22px;'>Welcome to <a href="https://github.com/henry123-boy/SpaTrack2/tree/v2_release" target="_blank" style="color: #3b82f6;">SpatialTracker V2</a>! This interface allows you to track any pixels in 3D using our model.</p>
<h2 style='color: #1d4ed8; margin-bottom: 15px;'>Instructions:</h2>
<ol style='font-size: 20px; line-height: 1.6;'>
<li>🎬 Upload a video or select from examples below</li>
<li>🎯 Add a segmentation mask by selecting positive points (green) and negative points (red) on the first frame</li>
<li>⚡ Click 'Run Tracker and Visualize' when done</li>
<li>🔍 The reconstructed dynamic 3D scene with point tracks will be shown on the right. The 2D tracking result is also shown on the left.</li>
</ol>
<p style='font-size: 22px;'>❗ We limit the max number of frames to 80 in Huggingface Spaces</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
video_input = gr.Video(label="Upload Video", format="mp4", height=300)
# Move Interactive Frame and 2D Tracking under video upload
with gr.Row():
display_image = gr.Image(type="numpy", label="📸 Interactive Frame", height=250)
track_video = gr.Video(label="🎯 2D Tracking Result", height=250)
with gr.Row():
fg_bg_radio = gr.Radio(choices=['positive_point', 'negative_point'],
label='Point label',
value='positive_point',
elem_id="point_label_radio")
reset_button = gr.Button("Reset points")
clear_button = gr.Button("Clear All", variant="secondary")
with gr.Accordion("⚙️ Advanced Settings", open=False, elem_id="advanced_settings"):
grid_size = gr.Slider(minimum=10, maximum=100, value=50, step=1,
label="Grid Size", info="Size of the tracking grid")
vo_points = gr.Slider(minimum=256, maximum=4096, value=756, step=50,
label="VO Points", info="Number of points for solving camera pose")
fps_slider = gr.Slider(minimum=1, maximum=10, value=2, step=1,
label="FPS", info="FPS of the output video")
viz_button = gr.Button("🚀 Run Tracker and Visualize", variant="primary", size="lg")
with gr.Column(scale=2):
# Add example videos using gr.Examples
examples_component = gr.Examples(
examples=[
"examples/robot_1.mp4",
"examples/robot_2.mp4",
"examples/robot_3.mp4",
"examples/kiss.mp4",
"examples/backpack.mp4",
"examples/kitchen.mp4",
"examples/pillow.mp4",
"examples/biker.mp4",
"examples/running.mp4",
"examples/drifting.mp4",
"examples/skate_sunset.mp4",
"examples/dancer.mp4",
"examples/ego_kc1.mp4",
"examples/vertical_place.mp4",
"examples/droid_robot.mp4"
],
inputs=[video_input],
label="📁 Example Videos",
examples_per_page=20 # Show all examples on one page to enable scrolling
)
# Initialize with the template interface showing "Interactive 3D Tracking"
viz_iframe = gr.HTML("""
<div style='border: 3px solid #3b82f6; border-radius: 10px; overflow: hidden; box-shadow: 0 8px 32px rgba(59, 130, 246, 0.3);'>
<iframe id="viz_iframe" src="/gradio_api/file=_viz/viz_template.html" width="100%" height="950px" style="border:none;"></iframe>
</div>
""")
# Simple description below the visualization
gr.HTML("""
<div style='text-align: center; margin-top: 15px; color: #666; font-size: 14px;'>
🎮 Interactive 3D visualization adapted from <a href="https://tapip3d.github.io/" target="_blank" style="color: #3b82f6;">TAPIP3D</a>
</div>
""")
# Function to handle both manual upload and example selection
def handle_video_change(video):
"""Handle video change from both manual upload and example selection"""
if video is None:
return None, None, [], 50, 756, 3
# Handle video upload (extract first frame)
original_image_state, display_image, selected_points = handle_video_upload(video)
# Check if this is an example video and update settings accordingly
video_path = video if isinstance(video, str) else video.name
video_name = os.path.splitext(os.path.basename(video_path))[0]
# Check if this video is in our examples list
is_example = False
for config in EXAMPLE_VIDEOS:
if config["name"] == video_name:
is_example = True
grid_size_val, vo_points_val, fps_val = config["grid_size"], config["vo_points"], config["fps"]
break
# If not an example video, keep current/default settings
if not is_example:
grid_size_val, vo_points_val, fps_val = 50, 756, 3
return original_image_state, display_image, selected_points, grid_size_val, vo_points_val, fps_val
# Bind events
video_input.change(
handle_video_change,
inputs=[video_input],
outputs=[original_image_state, display_image, selected_points, grid_size, vo_points, fps_slider]
)
reset_button.click(reset_points,
inputs=[original_image_state, selected_points],
outputs=[display_image, selected_points])
clear_button.click(clear_all,
outputs=[video_input, display_image, selected_points])
display_image.select(select_point,
inputs=[original_image_state, selected_points, fg_bg_radio],
outputs=[display_image, selected_points])
viz_button.click(launch_viz,
inputs=[grid_size, vo_points, fps_slider, original_image_state],
outputs=[viz_iframe, track_video],
)
# Launch the demo with simplified parameters for Hugging Face Spaces
demo.launch()
# Remove the demo.launch() call from outside the Blocks context
# demo.launch(debug=True, share=False) # Enable debug mode and sharing