File size: 2,930 Bytes
a51c6d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from typing import *

import numpy as np
import matplotlib


def colorize_depth(depth: np.ndarray, mask: np.ndarray = None, normalize: bool = True, cmap: str = 'Spectral') -> np.ndarray:
    if mask is None:
        depth = np.where(depth > 0, depth, np.nan)
    else:
        depth = np.where((depth > 0) & mask, depth, np.nan)
    disp = 1 / depth
    if normalize:
        min_disp, max_disp = np.nanquantile(disp, 0.001), np.nanquantile(disp, 0.99)
        disp = (disp - min_disp) / (max_disp - min_disp)
    colored = np.nan_to_num(matplotlib.colormaps[cmap](1.0 - disp)[..., :3], 0)
    colored = np.ascontiguousarray((colored.clip(0, 1) * 255).astype(np.uint8))
    return colored


def colorize_depth_affine(depth: np.ndarray, mask: np.ndarray = None, cmap: str = 'Spectral') -> np.ndarray:
    if mask is not None:
        depth = np.where(mask, depth, np.nan)

    min_depth, max_depth = np.nanquantile(depth, 0.001), np.nanquantile(depth, 0.999)
    depth = (depth - min_depth) / (max_depth - min_depth)
    colored = np.nan_to_num(matplotlib.colormaps[cmap](depth)[..., :3], 0)
    colored = np.ascontiguousarray((colored.clip(0, 1) * 255).astype(np.uint8))
    return colored


def colorize_disparity(disparity: np.ndarray, mask: np.ndarray = None, normalize: bool = True, cmap: str = 'Spectral') -> np.ndarray:
    if mask is not None:
        disparity = np.where(mask, disparity, np.nan)
    
    if normalize:
        min_disp, max_disp = np.nanquantile(disparity, 0.001), np.nanquantile(disparity, 0.999)
        disparity = (disparity - min_disp) / (max_disp - min_disp)
    colored = np.nan_to_num(matplotlib.colormaps[cmap](1.0 - disparity)[..., :3], 0)
    colored = np.ascontiguousarray((colored.clip(0, 1) * 255).astype(np.uint8))
    return colored


def colorize_segmentation(segmentation: np.ndarray, cmap: str = 'Set1') -> np.ndarray:
    colored = matplotlib.colormaps[cmap]((segmentation % 20) / 20)[..., :3]
    colored = np.ascontiguousarray((colored.clip(0, 1) * 255).astype(np.uint8))
    return colored


def colorize_normal(normal: np.ndarray, mask: np.ndarray = None) -> np.ndarray:
    if mask is not None:
        normal = np.where(mask[..., None], normal, 0)
    normal = normal * [0.5, -0.5, -0.5] + 0.5
    normal = (normal.clip(0, 1) * 255).astype(np.uint8)
    return normal


def colorize_error_map(error_map: np.ndarray, mask: np.ndarray = None, cmap: str = 'plasma', value_range: Tuple[float, float] = None):
    vmin, vmax = value_range if value_range is not None else (np.nanmin(error_map), np.nanmax(error_map))
    cmap = matplotlib.colormaps[cmap]
    colorized_error_map = cmap(((error_map - vmin) / (vmax - vmin)).clip(0, 1))[..., :3]
    if mask is not None:
        colorized_error_map = np.where(mask[..., None], colorized_error_map, 0)
    colorized_error_map = np.ascontiguousarray((colorized_error_map.clip(0, 1) * 255).astype(np.uint8))
    return colorized_error_map