File size: 9,783 Bytes
a51c6d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os
os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '1'
from pathlib import Path
from typing import *
import itertools
import json
import warnings

import cv2
import numpy as np
from numpy import ndarray
from tqdm import tqdm, trange
from scipy.sparse import csr_array, hstack, vstack
from scipy.ndimage import convolve
from scipy.sparse.linalg import lsmr

import utils3d


def get_panorama_cameras():
    vertices, _ = utils3d.numpy.icosahedron()
    intrinsics = utils3d.numpy.intrinsics_from_fov(fov_x=np.deg2rad(90), fov_y=np.deg2rad(90))
    extrinsics = utils3d.numpy.extrinsics_look_at([0, 0, 0], vertices, [0, 0, 1]).astype(np.float32)
    return extrinsics, [intrinsics] * len(vertices)


def spherical_uv_to_directions(uv: np.ndarray):
    theta, phi = (1 - uv[..., 0]) * (2 * np.pi), uv[..., 1] * np.pi
    directions = np.stack([np.sin(phi) * np.cos(theta), np.sin(phi) * np.sin(theta), np.cos(phi)], axis=-1)
    return directions


def directions_to_spherical_uv(directions: np.ndarray):
    directions = directions / np.linalg.norm(directions, axis=-1, keepdims=True)
    u = 1 - np.arctan2(directions[..., 1], directions[..., 0]) / (2 * np.pi) % 1.0
    v = np.arccos(directions[..., 2]) / np.pi
    return np.stack([u, v], axis=-1)


def split_panorama_image(image: np.ndarray, extrinsics: np.ndarray, intrinsics: np.ndarray, resolution: int):
    height, width = image.shape[:2]
    uv = utils3d.numpy.image_uv(width=resolution, height=resolution)
    splitted_images = []
    for i in range(len(extrinsics)):
        spherical_uv = directions_to_spherical_uv(utils3d.numpy.unproject_cv(uv, extrinsics=extrinsics[i], intrinsics=intrinsics[i]))
        pixels = utils3d.numpy.uv_to_pixel(spherical_uv, width=width, height=height).astype(np.float32)

        splitted_image = cv2.remap(image, pixels[..., 0], pixels[..., 1], interpolation=cv2.INTER_LINEAR)    
        splitted_images.append(splitted_image)
    return splitted_images


def poisson_equation(width: int, height: int, wrap_x: bool = False, wrap_y: bool = False) -> Tuple[csr_array, ndarray]:
    grid_index = np.arange(height * width).reshape(height, width)
    grid_index = np.pad(grid_index, ((0, 0), (1, 1)), mode='wrap' if wrap_x else 'edge')
    grid_index = np.pad(grid_index, ((1, 1), (0, 0)), mode='wrap' if wrap_y else 'edge')
    
    data = np.array([[-4, 1, 1, 1, 1]], dtype=np.float32).repeat(height * width, axis=0).reshape(-1)
    indices = np.stack([
        grid_index[1:-1, 1:-1],
        grid_index[:-2, 1:-1],         # up
        grid_index[2:, 1:-1],          # down
        grid_index[1:-1, :-2],         # left
        grid_index[1:-1, 2:]           # right
    ], axis=-1).reshape(-1)                                                                 
    indptr = np.arange(0, height * width * 5 + 1, 5) 
    A = csr_array((data, indices, indptr), shape=(height * width, height * width))
    
    return A


def grad_equation(width: int, height: int, wrap_x: bool = False, wrap_y: bool = False) -> Tuple[csr_array, np.ndarray]:
    grid_index = np.arange(width * height).reshape(height, width)
    if wrap_x:
        grid_index = np.pad(grid_index, ((0, 0), (0, 1)), mode='wrap')
    if wrap_y:
        grid_index = np.pad(grid_index, ((0, 1), (0, 0)), mode='wrap')

    data = np.concatenate([
        np.concatenate([
            np.ones((grid_index.shape[0], grid_index.shape[1] - 1), dtype=np.float32).reshape(-1, 1),        # x[i,j]                                           
            -np.ones((grid_index.shape[0], grid_index.shape[1] - 1), dtype=np.float32).reshape(-1, 1),       # x[i,j-1]           
        ], axis=1).reshape(-1),
        np.concatenate([
            np.ones((grid_index.shape[0] - 1, grid_index.shape[1]), dtype=np.float32).reshape(-1, 1),        # x[i,j]                                           
            -np.ones((grid_index.shape[0] - 1, grid_index.shape[1]), dtype=np.float32).reshape(-1, 1),       # x[i-1,j]           
        ], axis=1).reshape(-1),
    ])
    indices = np.concatenate([
        np.concatenate([
            grid_index[:, :-1].reshape(-1, 1),
            grid_index[:, 1:].reshape(-1, 1),
        ], axis=1).reshape(-1),
        np.concatenate([
            grid_index[:-1, :].reshape(-1, 1),
            grid_index[1:, :].reshape(-1, 1),
        ], axis=1).reshape(-1),
    ])
    indptr = np.arange(0, grid_index.shape[0] * (grid_index.shape[1] - 1) * 2 + (grid_index.shape[0] - 1) * grid_index.shape[1] * 2 + 1, 2)
    A = csr_array((data, indices, indptr), shape=(grid_index.shape[0] * (grid_index.shape[1] - 1) + (grid_index.shape[0] - 1) * grid_index.shape[1], height * width))

    return A


def merge_panorama_depth(width: int, height: int, distance_maps: List[np.ndarray], pred_masks: List[np.ndarray], extrinsics: List[np.ndarray], intrinsics: List[np.ndarray]):
    if max(width, height) > 256:
        panorama_depth_init, _ = merge_panorama_depth(width // 2, height // 2, distance_maps, pred_masks, extrinsics, intrinsics)
        panorama_depth_init = cv2.resize(panorama_depth_init, (width, height), cv2.INTER_LINEAR)
    else:
        panorama_depth_init = None

    uv = utils3d.numpy.image_uv(width=width, height=height)
    spherical_directions = spherical_uv_to_directions(uv)

    # Warp each view to the panorama
    panorama_log_distance_grad_maps, panorama_grad_masks = [], []
    panorama_log_distance_laplacian_maps, panorama_laplacian_masks = [], []
    panorama_pred_masks = []
    for i in range(len(distance_maps)):
        projected_uv, projected_depth = utils3d.numpy.project_cv(spherical_directions, extrinsics=extrinsics[i], intrinsics=intrinsics[i])
        projection_valid_mask = (projected_depth > 0) & (projected_uv > 0).all(axis=-1) & (projected_uv < 1).all(axis=-1)
        
        projected_pixels = utils3d.numpy.uv_to_pixel(np.clip(projected_uv, 0, 1), width=distance_maps[i].shape[1], height=distance_maps[i].shape[0]).astype(np.float32)
        
        log_splitted_distance = np.log(distance_maps[i])
        panorama_log_distance_map = np.where(projection_valid_mask, cv2.remap(log_splitted_distance, projected_pixels[..., 0], projected_pixels[..., 1], cv2.INTER_LINEAR, borderMode=cv2.BORDER_REPLICATE), 0)
        panorama_pred_mask = projection_valid_mask & (cv2.remap(pred_masks[i].astype(np.uint8), projected_pixels[..., 0], projected_pixels[..., 1], cv2.INTER_NEAREST, borderMode=cv2.BORDER_REPLICATE) > 0)

        # calculate gradient map
        padded = np.pad(panorama_log_distance_map, ((0, 0), (0, 1)), mode='wrap')
        grad_x, grad_y = padded[:, :-1] - padded[:, 1:], padded[:-1, :] - padded[1:, :]

        padded = np.pad(panorama_pred_mask, ((0, 0), (0, 1)), mode='wrap')
        mask_x, mask_y = padded[:, :-1] & padded[:, 1:], padded[:-1, :] & padded[1:, :]
        
        panorama_log_distance_grad_maps.append((grad_x, grad_y))
        panorama_grad_masks.append((mask_x, mask_y))

        # calculate laplacian map
        padded = np.pad(panorama_log_distance_map, ((1, 1), (0, 0)), mode='edge')
        padded = np.pad(padded, ((0, 0), (1, 1)), mode='wrap')
        laplacian = convolve(padded, np.array([[0, 1, 0], [1, -4, 1], [0, 1, 0]], dtype=np.float32))[1:-1, 1:-1]

        padded = np.pad(panorama_pred_mask, ((1, 1), (0, 0)), mode='edge')
        padded = np.pad(padded, ((0, 0), (1, 1)), mode='wrap')
        mask = convolve(padded.astype(np.uint8), np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]], dtype=np.uint8))[1:-1, 1:-1] == 5

        panorama_log_distance_laplacian_maps.append(laplacian)
        panorama_laplacian_masks.append(mask)
        
        panorama_pred_masks.append(panorama_pred_mask)  
        
    panorama_log_distance_grad_x = np.stack([grad_map[0] for grad_map in panorama_log_distance_grad_maps], axis=0)
    panorama_log_distance_grad_y = np.stack([grad_map[1] for grad_map in panorama_log_distance_grad_maps], axis=0)
    panorama_grad_mask_x = np.stack([mask_map[0] for mask_map in panorama_grad_masks], axis=0)
    panorama_grad_mask_y = np.stack([mask_map[1] for mask_map in panorama_grad_masks], axis=0)

    panorama_log_distance_grad_x = np.sum(panorama_log_distance_grad_x * panorama_grad_mask_x, axis=0) / np.sum(panorama_grad_mask_x, axis=0).clip(1e-3)
    panorama_log_distance_grad_y = np.sum(panorama_log_distance_grad_y * panorama_grad_mask_y, axis=0) / np.sum(panorama_grad_mask_y, axis=0).clip(1e-3)

    panorama_laplacian_maps = np.stack(panorama_log_distance_laplacian_maps, axis=0)
    panorama_laplacian_masks = np.stack(panorama_laplacian_masks, axis=0)
    panorama_laplacian_map = np.sum(panorama_laplacian_maps * panorama_laplacian_masks, axis=0) / np.sum(panorama_laplacian_masks, axis=0).clip(1e-3)

    grad_x_mask = np.any(panorama_grad_mask_x, axis=0).reshape(-1)
    grad_y_mask = np.any(panorama_grad_mask_y, axis=0).reshape(-1)
    grad_mask = np.concatenate([grad_x_mask, grad_y_mask])
    laplacian_mask = np.any(panorama_laplacian_masks, axis=0).reshape(-1)

    # Solve overdetermined system
    A = vstack([
        grad_equation(width, height, wrap_x=True, wrap_y=False)[grad_mask],
        poisson_equation(width, height, wrap_x=True, wrap_y=False)[laplacian_mask],
    ])
    b = np.concatenate([
        panorama_log_distance_grad_x.reshape(-1)[grad_x_mask], 
        panorama_log_distance_grad_y.reshape(-1)[grad_y_mask],
        panorama_laplacian_map.reshape(-1)[laplacian_mask]
    ])
    x, *_ = lsmr(
        A, b, 
        atol=1e-5, btol=1e-5,
        x0=np.log(panorama_depth_init).reshape(-1) if panorama_depth_init is not None else None, 
        show=False,
    )
    
    panorama_depth = np.exp(x).reshape(height, width).astype(np.float32)
    panorama_mask = np.any(panorama_pred_masks, axis=0)

    return panorama_depth, panorama_mask