File size: 8,073 Bytes
a51c6d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '1'
from typing import IO
import zipfile
import json
import io
from typing import *
from pathlib import Path
import re
from PIL import Image, PngImagePlugin

import numpy as np
import cv2 

from .tools import timeit


def save_glb(
    save_path: Union[str, os.PathLike], 
    vertices: np.ndarray, 
    faces: np.ndarray, 
    vertex_uvs: np.ndarray,
    texture: np.ndarray,
    vertex_normals: Optional[np.ndarray] = None,
):
    import trimesh
    import trimesh.visual
    from PIL import Image

    trimesh.Trimesh(
        vertices=vertices, 
        vertex_normals=vertex_normals,
        faces=faces, 
        visual = trimesh.visual.texture.TextureVisuals(
            uv=vertex_uvs, 
            material=trimesh.visual.material.PBRMaterial(
                baseColorTexture=Image.fromarray(texture),
                metallicFactor=0.5,
                roughnessFactor=1.0
            )
        ),
        process=False
    ).export(save_path)


def save_ply(
    save_path: Union[str, os.PathLike], 
    vertices: np.ndarray, 
    faces: np.ndarray, 
    vertex_colors: np.ndarray,
    vertex_normals: Optional[np.ndarray] = None,
):
    import trimesh
    import trimesh.visual
    from PIL import Image

    trimesh.Trimesh(
        vertices=vertices, 
        faces=faces, 
        vertex_colors=vertex_colors,
        vertex_normals=vertex_normals,
        process=False
    ).export(save_path)


def read_image(path: Union[str, os.PathLike, IO]) -> np.ndarray:
    """
    Read a image, return uint8 RGB array of shape (H, W, 3).
    """
    if isinstance(path, (str, os.PathLike)):
        data = Path(path).read_bytes()  
    else:
        data = path.read()
    image = cv2.cvtColor(cv2.imdecode(np.frombuffer(data, np.uint8), cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB)
    return image


def write_image(path: Union[str, os.PathLike, IO], image: np.ndarray, quality: int = 95):
    """
    Write a image, input uint8 RGB array of shape (H, W, 3).
    """
    data = cv2.imencode('.jpg', cv2.cvtColor(image, cv2.COLOR_RGB2BGR), [cv2.IMWRITE_JPEG_QUALITY, quality])[1].tobytes()
    if isinstance(path, (str, os.PathLike)):
        Path(path).write_bytes(data)
    else:
        path.write(data)


def read_depth(path: Union[str, os.PathLike, IO]) -> Tuple[np.ndarray, float]:
    """
    Read a depth image, return float32 depth array of shape (H, W).
    """
    if isinstance(path, (str, os.PathLike)):
        data = Path(path).read_bytes()
    else:
        data = path.read()
    pil_image = Image.open(io.BytesIO(data))
    near = float(pil_image.info.get('near'))
    far = float(pil_image.info.get('far'))
    unit = float(pil_image.info.get('unit')) if 'unit' in pil_image.info else None
    depth = np.array(pil_image)
    mask_nan, mask_inf = depth == 0, depth == 65535
    depth = (depth.astype(np.float32) - 1) / 65533
    depth = near ** (1 - depth) * far ** depth
    depth[mask_nan] = np.nan
    depth[mask_inf] = np.inf
    return depth, unit


def write_depth(
    path: Union[str, os.PathLike, IO], 
    depth: np.ndarray, 
    unit: float = None,
    max_range: float = 1e5,
    compression_level: int = 7,
):
    """
    Encode and write a depth image as 16-bit PNG format.
    ### Parameters:
    - `path: Union[str, os.PathLike, IO]`
        The file path or file object to write to.
    - `depth: np.ndarray`
        The depth array, float32 array of shape (H, W). 
        May contain `NaN` for invalid values and `Inf` for infinite values.
    - `unit: float = None`
        The unit of the depth values.
    
    Depth values are encoded as follows:
    - 0: unknown
    - 1 ~ 65534: depth values in logarithmic
    - 65535: infinity
    
    metadata is stored in the PNG file as text fields:
    - `near`: the minimum depth value
    - `far`: the maximum depth value
    - `unit`: the unit of the depth values (optional)
    """
    mask_values, mask_nan, mask_inf = np.isfinite(depth), np.isnan(depth),np.isinf(depth)

    depth = depth.astype(np.float32)
    mask_finite = depth
    near = max(depth[mask_values].min(), 1e-5)
    far = max(near * 1.1, min(depth[mask_values].max(), near * max_range))
    depth = 1 + np.round((np.log(np.nan_to_num(depth, nan=0).clip(near, far) / near) / np.log(far / near)).clip(0, 1) * 65533).astype(np.uint16) # 1~65534
    depth[mask_nan] = 0
    depth[mask_inf] = 65535

    pil_image = Image.fromarray(depth)
    pnginfo = PngImagePlugin.PngInfo()
    pnginfo.add_text('near', str(near))
    pnginfo.add_text('far', str(far))
    if unit is not None:
        pnginfo.add_text('unit', str(unit))
    pil_image.save(path, pnginfo=pnginfo, compress_level=compression_level)


def read_segmentation(path: Union[str, os.PathLike, IO]) -> Tuple[np.ndarray, Dict[str, int]]:
    """
    Read a segmentation mask
    ### Parameters:
    - `path: Union[str, os.PathLike, IO]`
        The file path or file object to read from.
    ### Returns:
    - `Tuple[np.ndarray, Dict[str, int]]`
        A tuple containing:
        - `mask`: uint8 or uint16 numpy.ndarray of shape (H, W).
        - `labels`: Dict[str, int]. The label mapping, a dictionary of {label_name: label_id}.
    """
    if isinstance(path, (str, os.PathLike)):
        data = Path(path).read_bytes()
    else:
        data = path.read()
    pil_image = Image.open(io.BytesIO(data))
    labels = json.loads(pil_image.info['labels']) if 'labels' in pil_image.info else None
    mask = np.array(pil_image)
    return mask, labels


def write_segmentation(path: Union[str, os.PathLike, IO], mask: np.ndarray, labels: Dict[str, int] = None, compression_level: int = 7):
    """
    Write a segmentation mask and label mapping, as PNG format.
    ### Parameters:
    - `path: Union[str, os.PathLike, IO]`
        The file path or file object to write to.
    - `mask: np.ndarray`
        The segmentation mask, uint8 or uint16 array of shape (H, W).
    - `labels: Dict[str, int] = None`
        The label mapping, a dictionary of {label_name: label_id}.
    - `compression_level: int = 7`
        The compression level for PNG compression.
    """
    assert mask.dtype == np.uint8 or mask.dtype == np.uint16, f"Unsupported dtype {mask.dtype}"
    pil_image = Image.fromarray(mask)
    pnginfo = PngImagePlugin.PngInfo()
    if labels is not None:
        labels_json = json.dumps(labels, ensure_ascii=True, separators=(',', ':'))
        pnginfo.add_text('labels', labels_json)
    pil_image.save(path, pnginfo=pnginfo, compress_level=compression_level)



def read_normal(path: Union[str, os.PathLike, IO]) -> np.ndarray:
    """
    Read a normal image, return float32 normal array of shape (H, W, 3).
    """
    if isinstance(path, (str, os.PathLike)):
        data = Path(path).read_bytes()
    else:
        data = path.read()
    normal = cv2.cvtColor(cv2.imdecode(np.frombuffer(data, np.uint8), cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB)
    mask_nan = np.all(normal == 0, axis=-1)
    normal = (normal.astype(np.float32) / 65535 - 0.5) * [2.0, -2.0, -2.0]
    normal = normal / (np.sqrt(np.square(normal[..., 0]) + np.square(normal[..., 1]) + np.square(normal[..., 2])) + 1e-12)
    normal[mask_nan] = np.nan
    return normal


def write_normal(path: Union[str, os.PathLike, IO], normal: np.ndarray, compression_level: int = 7) -> np.ndarray:
    """
    Write a normal image, input float32 normal array of shape (H, W, 3).
    """
    mask_nan = np.isnan(normal).any(axis=-1)
    normal = ((normal * [0.5, -0.5, -0.5] + 0.5).clip(0, 1) * 65535).astype(np.uint16)
    normal[mask_nan] = 0
    data = cv2.imencode('.png', cv2.cvtColor(normal, cv2.COLOR_RGB2BGR), [cv2.IMWRITE_PNG_COMPRESSION, compression_level])[1].tobytes()
    if isinstance(path, (str, os.PathLike)):
        Path(path).write_bytes(data)
    else:
        path.write(data)


def read_meta(path: Union[str, os.PathLike, IO]) -> Dict[str, Any]:
    return json.loads(Path(path).read_text())

def write_meta(path: Union[str, os.PathLike, IO], meta: Dict[str, Any]):
    Path(path).write_text(json.dumps(meta))