Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,073 Bytes
a51c6d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import os
os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '1'
from typing import IO
import zipfile
import json
import io
from typing import *
from pathlib import Path
import re
from PIL import Image, PngImagePlugin
import numpy as np
import cv2
from .tools import timeit
def save_glb(
save_path: Union[str, os.PathLike],
vertices: np.ndarray,
faces: np.ndarray,
vertex_uvs: np.ndarray,
texture: np.ndarray,
vertex_normals: Optional[np.ndarray] = None,
):
import trimesh
import trimesh.visual
from PIL import Image
trimesh.Trimesh(
vertices=vertices,
vertex_normals=vertex_normals,
faces=faces,
visual = trimesh.visual.texture.TextureVisuals(
uv=vertex_uvs,
material=trimesh.visual.material.PBRMaterial(
baseColorTexture=Image.fromarray(texture),
metallicFactor=0.5,
roughnessFactor=1.0
)
),
process=False
).export(save_path)
def save_ply(
save_path: Union[str, os.PathLike],
vertices: np.ndarray,
faces: np.ndarray,
vertex_colors: np.ndarray,
vertex_normals: Optional[np.ndarray] = None,
):
import trimesh
import trimesh.visual
from PIL import Image
trimesh.Trimesh(
vertices=vertices,
faces=faces,
vertex_colors=vertex_colors,
vertex_normals=vertex_normals,
process=False
).export(save_path)
def read_image(path: Union[str, os.PathLike, IO]) -> np.ndarray:
"""
Read a image, return uint8 RGB array of shape (H, W, 3).
"""
if isinstance(path, (str, os.PathLike)):
data = Path(path).read_bytes()
else:
data = path.read()
image = cv2.cvtColor(cv2.imdecode(np.frombuffer(data, np.uint8), cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB)
return image
def write_image(path: Union[str, os.PathLike, IO], image: np.ndarray, quality: int = 95):
"""
Write a image, input uint8 RGB array of shape (H, W, 3).
"""
data = cv2.imencode('.jpg', cv2.cvtColor(image, cv2.COLOR_RGB2BGR), [cv2.IMWRITE_JPEG_QUALITY, quality])[1].tobytes()
if isinstance(path, (str, os.PathLike)):
Path(path).write_bytes(data)
else:
path.write(data)
def read_depth(path: Union[str, os.PathLike, IO]) -> Tuple[np.ndarray, float]:
"""
Read a depth image, return float32 depth array of shape (H, W).
"""
if isinstance(path, (str, os.PathLike)):
data = Path(path).read_bytes()
else:
data = path.read()
pil_image = Image.open(io.BytesIO(data))
near = float(pil_image.info.get('near'))
far = float(pil_image.info.get('far'))
unit = float(pil_image.info.get('unit')) if 'unit' in pil_image.info else None
depth = np.array(pil_image)
mask_nan, mask_inf = depth == 0, depth == 65535
depth = (depth.astype(np.float32) - 1) / 65533
depth = near ** (1 - depth) * far ** depth
depth[mask_nan] = np.nan
depth[mask_inf] = np.inf
return depth, unit
def write_depth(
path: Union[str, os.PathLike, IO],
depth: np.ndarray,
unit: float = None,
max_range: float = 1e5,
compression_level: int = 7,
):
"""
Encode and write a depth image as 16-bit PNG format.
### Parameters:
- `path: Union[str, os.PathLike, IO]`
The file path or file object to write to.
- `depth: np.ndarray`
The depth array, float32 array of shape (H, W).
May contain `NaN` for invalid values and `Inf` for infinite values.
- `unit: float = None`
The unit of the depth values.
Depth values are encoded as follows:
- 0: unknown
- 1 ~ 65534: depth values in logarithmic
- 65535: infinity
metadata is stored in the PNG file as text fields:
- `near`: the minimum depth value
- `far`: the maximum depth value
- `unit`: the unit of the depth values (optional)
"""
mask_values, mask_nan, mask_inf = np.isfinite(depth), np.isnan(depth),np.isinf(depth)
depth = depth.astype(np.float32)
mask_finite = depth
near = max(depth[mask_values].min(), 1e-5)
far = max(near * 1.1, min(depth[mask_values].max(), near * max_range))
depth = 1 + np.round((np.log(np.nan_to_num(depth, nan=0).clip(near, far) / near) / np.log(far / near)).clip(0, 1) * 65533).astype(np.uint16) # 1~65534
depth[mask_nan] = 0
depth[mask_inf] = 65535
pil_image = Image.fromarray(depth)
pnginfo = PngImagePlugin.PngInfo()
pnginfo.add_text('near', str(near))
pnginfo.add_text('far', str(far))
if unit is not None:
pnginfo.add_text('unit', str(unit))
pil_image.save(path, pnginfo=pnginfo, compress_level=compression_level)
def read_segmentation(path: Union[str, os.PathLike, IO]) -> Tuple[np.ndarray, Dict[str, int]]:
"""
Read a segmentation mask
### Parameters:
- `path: Union[str, os.PathLike, IO]`
The file path or file object to read from.
### Returns:
- `Tuple[np.ndarray, Dict[str, int]]`
A tuple containing:
- `mask`: uint8 or uint16 numpy.ndarray of shape (H, W).
- `labels`: Dict[str, int]. The label mapping, a dictionary of {label_name: label_id}.
"""
if isinstance(path, (str, os.PathLike)):
data = Path(path).read_bytes()
else:
data = path.read()
pil_image = Image.open(io.BytesIO(data))
labels = json.loads(pil_image.info['labels']) if 'labels' in pil_image.info else None
mask = np.array(pil_image)
return mask, labels
def write_segmentation(path: Union[str, os.PathLike, IO], mask: np.ndarray, labels: Dict[str, int] = None, compression_level: int = 7):
"""
Write a segmentation mask and label mapping, as PNG format.
### Parameters:
- `path: Union[str, os.PathLike, IO]`
The file path or file object to write to.
- `mask: np.ndarray`
The segmentation mask, uint8 or uint16 array of shape (H, W).
- `labels: Dict[str, int] = None`
The label mapping, a dictionary of {label_name: label_id}.
- `compression_level: int = 7`
The compression level for PNG compression.
"""
assert mask.dtype == np.uint8 or mask.dtype == np.uint16, f"Unsupported dtype {mask.dtype}"
pil_image = Image.fromarray(mask)
pnginfo = PngImagePlugin.PngInfo()
if labels is not None:
labels_json = json.dumps(labels, ensure_ascii=True, separators=(',', ':'))
pnginfo.add_text('labels', labels_json)
pil_image.save(path, pnginfo=pnginfo, compress_level=compression_level)
def read_normal(path: Union[str, os.PathLike, IO]) -> np.ndarray:
"""
Read a normal image, return float32 normal array of shape (H, W, 3).
"""
if isinstance(path, (str, os.PathLike)):
data = Path(path).read_bytes()
else:
data = path.read()
normal = cv2.cvtColor(cv2.imdecode(np.frombuffer(data, np.uint8), cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB)
mask_nan = np.all(normal == 0, axis=-1)
normal = (normal.astype(np.float32) / 65535 - 0.5) * [2.0, -2.0, -2.0]
normal = normal / (np.sqrt(np.square(normal[..., 0]) + np.square(normal[..., 1]) + np.square(normal[..., 2])) + 1e-12)
normal[mask_nan] = np.nan
return normal
def write_normal(path: Union[str, os.PathLike, IO], normal: np.ndarray, compression_level: int = 7) -> np.ndarray:
"""
Write a normal image, input float32 normal array of shape (H, W, 3).
"""
mask_nan = np.isnan(normal).any(axis=-1)
normal = ((normal * [0.5, -0.5, -0.5] + 0.5).clip(0, 1) * 65535).astype(np.uint16)
normal[mask_nan] = 0
data = cv2.imencode('.png', cv2.cvtColor(normal, cv2.COLOR_RGB2BGR), [cv2.IMWRITE_PNG_COMPRESSION, compression_level])[1].tobytes()
if isinstance(path, (str, os.PathLike)):
Path(path).write_bytes(data)
else:
path.write(data)
def read_meta(path: Union[str, os.PathLike, IO]) -> Dict[str, Any]:
return json.loads(Path(path).read_text())
def write_meta(path: Union[str, os.PathLike, IO], meta: Dict[str, Any]):
Path(path).write_text(json.dumps(meta)) |