Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,970 Bytes
a51c6d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
from typing import *
import math
import torch
import torch.nn.functional as F
import utils3d
from ..utils.geometry_torch import (
weighted_mean,
harmonic_mean,
geometric_mean,
mask_aware_nearest_resize,
normalized_view_plane_uv,
angle_diff_vec3
)
from ..utils.alignment import (
align_points_scale_z_shift,
align_points_scale,
align_points_scale_xyz_shift,
align_points_z_shift,
)
def _smooth(err: torch.FloatTensor, beta: float = 0.0) -> torch.FloatTensor:
if beta == 0:
return err
else:
return torch.where(err < beta, 0.5 * err.square() / beta, err - 0.5 * beta)
def affine_invariant_global_loss(
pred_points: torch.Tensor,
gt_points: torch.Tensor,
mask: torch.Tensor,
align_resolution: int = 64,
beta: float = 0.0,
trunc: float = 1.0,
sparsity_aware: bool = False
):
device = pred_points.device
# Align
(pred_points_lr, gt_points_lr), lr_mask = mask_aware_nearest_resize((pred_points, gt_points), mask=mask, size=(align_resolution, align_resolution))
scale, shift = align_points_scale_z_shift(pred_points_lr.flatten(-3, -2), gt_points_lr.flatten(-3, -2), lr_mask.flatten(-2, -1) / gt_points_lr[..., 2].flatten(-2, -1).clamp_min(1e-2), trunc=trunc)
valid = scale > 0
scale, shift = torch.where(valid, scale, 0), torch.where(valid[..., None], shift, 0)
pred_points = scale[..., None, None, None] * pred_points + shift[..., None, None, :]
# Compute loss
weight = (valid[..., None, None] & mask).float() / gt_points[..., 2].clamp_min(1e-5)
weight = weight.clamp_max(10.0 * weighted_mean(weight, mask, dim=(-2, -1), keepdim=True)) # In case your data contains extremely small depth values
loss = _smooth((pred_points - gt_points).abs() * weight[..., None], beta=beta).mean(dim=(-3, -2, -1))
if sparsity_aware:
# Reweighting improves performance on sparse depth data. NOTE: this is not used in MoGe-1.
sparsity = mask.float().mean(dim=(-2, -1)) / lr_mask.float().mean(dim=(-2, -1))
loss = loss / (sparsity + 1e-7)
err = (pred_points.detach() - gt_points).norm(dim=-1) / gt_points[..., 2]
# Record any scalar metric
misc = {
'truncated_error': weighted_mean(err.clamp_max(1.0), mask).item(),
'delta': weighted_mean((err < 1).float(), mask).item()
}
return loss, misc, scale.detach()
def monitoring(points: torch.Tensor):
return {
'std': points.std().item(),
}
def compute_anchor_sampling_weight(
points: torch.Tensor,
mask: torch.Tensor,
radius_2d: torch.Tensor,
radius_3d: torch.Tensor,
num_test: int = 64
) -> torch.Tensor:
# Importance sampling to balance the sampled probability of fine strutures.
# NOTE: MoGe-1 uses uniform random sampling instead of importance sampling.
# This is an incremental trick introduced later than the publication of MoGe-1 paper.
height, width = points.shape[-3:-1]
pixel_i, pixel_j = torch.meshgrid(
torch.arange(height, device=points.device),
torch.arange(width, device=points.device),
indexing='ij'
)
test_delta_i = torch.randint(-radius_2d, radius_2d + 1, (height, width, num_test,), device=points.device) # [num_test]
test_delta_j = torch.randint(-radius_2d, radius_2d + 1, (height, width, num_test,), device=points.device) # [num_test]
test_i, test_j = pixel_i[..., None] + test_delta_i, pixel_j[..., None] + test_delta_j # [height, width, num_test]
test_mask = (test_i >= 0) & (test_i < height) & (test_j >= 0) & (test_j < width) # [height, width, num_test]
test_i, test_j = test_i.clamp(0, height - 1), test_j.clamp(0, width - 1) # [height, width, num_test]
test_mask = test_mask & mask[..., test_i, test_j] # [..., height, width, num_test]
test_points = points[..., test_i, test_j, :] # [..., height, width, num_test, 3]
test_dist = (test_points - points[..., None, :]).norm(dim=-1) # [..., height, width, num_test]
weight = 1 / ((test_dist <= radius_3d[..., None]) & test_mask).float().sum(dim=-1).clamp_min(1)
weight = torch.where(mask, weight, 0)
weight = weight / weight.sum(dim=(-2, -1), keepdim=True).add(1e-7) # [..., height, width]
return weight
def affine_invariant_local_loss(
pred_points: torch.Tensor,
gt_points: torch.Tensor,
gt_mask: torch.Tensor,
focal: torch.Tensor,
global_scale: torch.Tensor,
level: Literal[4, 16, 64],
align_resolution: int = 32,
num_patches: int = 16,
beta: float = 0.0,
trunc: float = 1.0,
sparsity_aware: bool = False
):
device, dtype = pred_points.device, pred_points.dtype
*batch_shape, height, width, _ = pred_points.shape
batch_size = math.prod(batch_shape)
pred_points, gt_points, gt_mask, focal, global_scale = pred_points.reshape(-1, height, width, 3), gt_points.reshape(-1, height, width, 3), gt_mask.reshape(-1, height, width), focal.reshape(-1), global_scale.reshape(-1) if global_scale is not None else None
# Sample patch anchor points indices [num_total_patches]
radius_2d = math.ceil(0.5 / level * (height ** 2 + width ** 2) ** 0.5)
radius_3d = 0.5 / level / focal * gt_points[..., 2]
anchor_sampling_weights = compute_anchor_sampling_weight(gt_points, gt_mask, radius_2d, radius_3d, num_test=64)
where_mask = torch.where(gt_mask)
random_selection = torch.multinomial(anchor_sampling_weights[where_mask], num_patches * batch_size, replacement=True)
patch_batch_idx, patch_anchor_i, patch_anchor_j = [indices[random_selection] for indices in where_mask] # [num_total_patches]
# Get patch indices [num_total_patches, patch_h, patch_w]
patch_i, patch_j = torch.meshgrid(
torch.arange(-radius_2d, radius_2d + 1, device=device),
torch.arange(-radius_2d, radius_2d + 1, device=device),
indexing='ij'
)
patch_i, patch_j = patch_i + patch_anchor_i[:, None, None], patch_j + patch_anchor_j[:, None, None]
patch_mask = (patch_i >= 0) & (patch_i < height) & (patch_j >= 0) & (patch_j < width)
patch_i, patch_j = patch_i.clamp(0, height - 1), patch_j.clamp(0, width - 1)
# Get patch mask and gt patch points
gt_patch_anchor_points = gt_points[patch_batch_idx, patch_anchor_i, patch_anchor_j]
gt_patch_radius_3d = 0.5 / level / focal[patch_batch_idx] * gt_patch_anchor_points[:, 2]
gt_patch_points = gt_points[patch_batch_idx[:, None, None], patch_i, patch_j]
gt_patch_dist = (gt_patch_points - gt_patch_anchor_points[:, None, None, :]).norm(dim=-1)
patch_mask &= gt_mask[patch_batch_idx[:, None, None], patch_i, patch_j]
patch_mask &= gt_patch_dist <= gt_patch_radius_3d[:, None, None]
# Pick only non-empty patches
MINIMUM_POINTS_PER_PATCH = 32
nonempty = torch.where(patch_mask.sum(dim=(-2, -1)) >= MINIMUM_POINTS_PER_PATCH)
num_nonempty_patches = nonempty[0].shape[0]
if num_nonempty_patches == 0:
return torch.tensor(0.0, dtype=dtype, device=device), {}
# Finalize all patch variables
patch_batch_idx, patch_i, patch_j = patch_batch_idx[nonempty], patch_i[nonempty], patch_j[nonempty]
patch_mask = patch_mask[nonempty] # [num_nonempty_patches, patch_h, patch_w]
gt_patch_points = gt_patch_points[nonempty] # [num_nonempty_patches, patch_h, patch_w, 3]
gt_patch_radius_3d = gt_patch_radius_3d[nonempty] # [num_nonempty_patches]
gt_patch_anchor_points = gt_patch_anchor_points[nonempty] # [num_nonempty_patches, 3]
pred_patch_points = pred_points[patch_batch_idx[:, None, None], patch_i, patch_j]
# Align patch points
(pred_patch_points_lr, gt_patch_points_lr), patch_lr_mask = mask_aware_nearest_resize((pred_patch_points, gt_patch_points), mask=patch_mask, size=(align_resolution, align_resolution))
local_scale, local_shift = align_points_scale_xyz_shift(pred_patch_points_lr.flatten(-3, -2), gt_patch_points_lr.flatten(-3, -2), patch_lr_mask.flatten(-2) / gt_patch_radius_3d[:, None].add(1e-7), trunc=trunc)
if global_scale is not None:
scale_differ = local_scale / global_scale[patch_batch_idx]
patch_valid = (scale_differ > 0.1) & (scale_differ < 10.0) & (global_scale > 0)
else:
patch_valid = local_scale > 0
local_scale, local_shift = torch.where(patch_valid, local_scale, 0), torch.where(patch_valid[:, None], local_shift, 0)
patch_mask &= patch_valid[:, None, None]
pred_patch_points = local_scale[:, None, None, None] * pred_patch_points + local_shift[:, None, None, :] # [num_patches_nonempty, patch_h, patch_w, 3]
# Compute loss
gt_mean = harmonic_mean(gt_points[..., 2], gt_mask, dim=(-2, -1))
patch_weight = patch_mask.float() / gt_patch_points[..., 2].clamp_min(0.1 * gt_mean[patch_batch_idx, None, None]) # [num_patches_nonempty, patch_h, patch_w]
loss = _smooth((pred_patch_points - gt_patch_points).abs() * patch_weight[..., None], beta=beta).mean(dim=(-3, -2, -1)) # [num_patches_nonempty]
if sparsity_aware:
# Reweighting improves performance on sparse depth data. NOTE: this is not used in MoGe-1.
sparsity = patch_mask.float().mean(dim=(-2, -1)) / patch_lr_mask.float().mean(dim=(-2, -1))
loss = loss / (sparsity + 1e-7)
loss = torch.scatter_reduce(torch.zeros(batch_size, dtype=dtype, device=device), dim=0, index=patch_batch_idx, src=loss, reduce='sum') / num_patches
loss = loss.reshape(batch_shape)
err = (pred_patch_points.detach() - gt_patch_points).norm(dim=-1) / gt_patch_radius_3d[..., None, None]
# Record any scalar metric
misc = {
'truncated_error': weighted_mean(err.clamp_max(1), patch_mask).item(),
'delta': weighted_mean((err < 1).float(), patch_mask).item()
}
return loss, misc
def normal_loss(points: torch.Tensor, gt_points: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
device, dtype = points.device, points.dtype
height, width = points.shape[-3:-1]
leftup, rightup, leftdown, rightdown = points[..., :-1, :-1, :], points[..., :-1, 1:, :], points[..., 1:, :-1, :], points[..., 1:, 1:, :]
upxleft = torch.cross(rightup - rightdown, leftdown - rightdown, dim=-1)
leftxdown = torch.cross(leftup - rightup, rightdown - rightup, dim=-1)
downxright = torch.cross(leftdown - leftup, rightup - leftup, dim=-1)
rightxup = torch.cross(rightdown - leftdown, leftup - leftdown, dim=-1)
gt_leftup, gt_rightup, gt_leftdown, gt_rightdown = gt_points[..., :-1, :-1, :], gt_points[..., :-1, 1:, :], gt_points[..., 1:, :-1, :], gt_points[..., 1:, 1:, :]
gt_upxleft = torch.cross(gt_rightup - gt_rightdown, gt_leftdown - gt_rightdown, dim=-1)
gt_leftxdown = torch.cross(gt_leftup - gt_rightup, gt_rightdown - gt_rightup, dim=-1)
gt_downxright = torch.cross(gt_leftdown - gt_leftup, gt_rightup - gt_leftup, dim=-1)
gt_rightxup = torch.cross(gt_rightdown - gt_leftdown, gt_leftup - gt_leftdown, dim=-1)
mask_leftup, mask_rightup, mask_leftdown, mask_rightdown = mask[..., :-1, :-1], mask[..., :-1, 1:], mask[..., 1:, :-1], mask[..., 1:, 1:]
mask_upxleft = mask_rightup & mask_leftdown & mask_rightdown
mask_leftxdown = mask_leftup & mask_rightdown & mask_rightup
mask_downxright = mask_leftdown & mask_rightup & mask_leftup
mask_rightxup = mask_rightdown & mask_leftup & mask_leftdown
MIN_ANGLE, MAX_ANGLE, BETA_RAD = math.radians(1), math.radians(90), math.radians(3)
loss = mask_upxleft * _smooth(angle_diff_vec3(upxleft, gt_upxleft).clamp(MIN_ANGLE, MAX_ANGLE), beta=BETA_RAD) \
+ mask_leftxdown * _smooth(angle_diff_vec3(leftxdown, gt_leftxdown).clamp(MIN_ANGLE, MAX_ANGLE), beta=BETA_RAD) \
+ mask_downxright * _smooth(angle_diff_vec3(downxright, gt_downxright).clamp(MIN_ANGLE, MAX_ANGLE), beta=BETA_RAD) \
+ mask_rightxup * _smooth(angle_diff_vec3(rightxup, gt_rightxup).clamp(MIN_ANGLE, MAX_ANGLE), beta=BETA_RAD)
loss = loss.mean() / (4 * max(points.shape[-3:-1]))
return loss, {}
def edge_loss(points: torch.Tensor, gt_points: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
device, dtype = points.device, points.dtype
height, width = points.shape[-3:-1]
dx = points[..., :-1, :, :] - points[..., 1:, :, :]
dy = points[..., :, :-1, :] - points[..., :, 1:, :]
gt_dx = gt_points[..., :-1, :, :] - gt_points[..., 1:, :, :]
gt_dy = gt_points[..., :, :-1, :] - gt_points[..., :, 1:, :]
mask_dx = mask[..., :-1, :] & mask[..., 1:, :]
mask_dy = mask[..., :, :-1] & mask[..., :, 1:]
MIN_ANGLE, MAX_ANGLE, BETA_RAD = math.radians(0.1), math.radians(90), math.radians(3)
loss_dx = mask_dx * _smooth(angle_diff_vec3(dx, gt_dx).clamp(MIN_ANGLE, MAX_ANGLE), beta=BETA_RAD)
loss_dy = mask_dy * _smooth(angle_diff_vec3(dy, gt_dy).clamp(MIN_ANGLE, MAX_ANGLE), beta=BETA_RAD)
loss = (loss_dx.mean(dim=(-2, -1)) + loss_dy.mean(dim=(-2, -1))) / (2 * max(points.shape[-3:-1]))
return loss, {}
def mask_l2_loss(pred_mask: torch.Tensor, gt_mask_pos: torch.Tensor, gt_mask_neg: torch.Tensor) -> torch.Tensor:
loss = gt_mask_neg.float() * pred_mask.square() + gt_mask_pos.float() * (1 - pred_mask).square()
loss = loss.mean(dim=(-2, -1))
return loss, {}
def mask_bce_loss(pred_mask_prob: torch.Tensor, gt_mask_pos: torch.Tensor, gt_mask_neg: torch.Tensor) -> torch.Tensor:
loss = (gt_mask_pos | gt_mask_neg) * F.binary_cross_entropy(pred_mask_prob, gt_mask_pos.float(), reduction='none')
loss = loss.mean(dim=(-2, -1))
return loss, {}
|