File size: 13,970 Bytes
a51c6d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
from typing import *
import math

import torch
import torch.nn.functional as F
import utils3d

from ..utils.geometry_torch import (
    weighted_mean, 
    harmonic_mean, 
    geometric_mean,
    mask_aware_nearest_resize,
    normalized_view_plane_uv,
    angle_diff_vec3
)
from ..utils.alignment import (
    align_points_scale_z_shift, 
    align_points_scale, 
    align_points_scale_xyz_shift,
    align_points_z_shift,
)


def _smooth(err: torch.FloatTensor, beta: float = 0.0) -> torch.FloatTensor:
    if beta == 0:
        return err
    else:
        return torch.where(err < beta, 0.5 * err.square() / beta, err - 0.5 * beta)


def affine_invariant_global_loss(
    pred_points: torch.Tensor, 
    gt_points: torch.Tensor, 
    mask: torch.Tensor, 
    align_resolution: int = 64, 
    beta: float = 0.0, 
    trunc: float = 1.0, 
    sparsity_aware: bool = False
):
    device = pred_points.device

    # Align
    (pred_points_lr, gt_points_lr), lr_mask = mask_aware_nearest_resize((pred_points, gt_points), mask=mask, size=(align_resolution, align_resolution))
    scale, shift = align_points_scale_z_shift(pred_points_lr.flatten(-3, -2), gt_points_lr.flatten(-3, -2), lr_mask.flatten(-2, -1) / gt_points_lr[..., 2].flatten(-2, -1).clamp_min(1e-2), trunc=trunc)
    valid = scale > 0
    scale, shift = torch.where(valid, scale, 0), torch.where(valid[..., None], shift, 0)

    pred_points = scale[..., None, None, None] * pred_points + shift[..., None, None, :]

    # Compute loss
    weight = (valid[..., None, None] & mask).float() / gt_points[..., 2].clamp_min(1e-5)
    weight = weight.clamp_max(10.0 * weighted_mean(weight, mask, dim=(-2, -1), keepdim=True))   # In case your data contains extremely small depth values
    loss = _smooth((pred_points - gt_points).abs() * weight[..., None], beta=beta).mean(dim=(-3, -2, -1))

    if sparsity_aware:
        # Reweighting improves performance on sparse depth data. NOTE: this is not used in MoGe-1.
        sparsity = mask.float().mean(dim=(-2, -1)) / lr_mask.float().mean(dim=(-2, -1))
        loss = loss / (sparsity + 1e-7)

    err = (pred_points.detach() - gt_points).norm(dim=-1) / gt_points[..., 2]

    # Record any scalar metric
    misc = {
        'truncated_error': weighted_mean(err.clamp_max(1.0), mask).item(),
        'delta': weighted_mean((err < 1).float(), mask).item()
    }

    return loss, misc, scale.detach()


def monitoring(points: torch.Tensor):
    return {
        'std': points.std().item(),
    }


def compute_anchor_sampling_weight(
    points: torch.Tensor, 
    mask: torch.Tensor, 
    radius_2d: torch.Tensor, 
    radius_3d: torch.Tensor, 
    num_test: int = 64
) -> torch.Tensor:
    # Importance sampling to balance the sampled probability of fine strutures.
    # NOTE: MoGe-1 uses uniform random sampling instead of importance sampling.
    #       This is an incremental trick introduced later than the publication of MoGe-1 paper.

    height, width = points.shape[-3:-1]

    pixel_i, pixel_j = torch.meshgrid(
        torch.arange(height, device=points.device), 
        torch.arange(width, device=points.device),
        indexing='ij'
    )
    
    test_delta_i = torch.randint(-radius_2d, radius_2d + 1, (height, width, num_test,), device=points.device)   # [num_test]
    test_delta_j = torch.randint(-radius_2d, radius_2d + 1, (height, width, num_test,), device=points.device)   # [num_test]
    test_i, test_j = pixel_i[..., None] + test_delta_i, pixel_j[..., None] + test_delta_j                       # [height, width, num_test]
    test_mask = (test_i >= 0) & (test_i < height) & (test_j >= 0) & (test_j < width)                            # [height, width, num_test]
    test_i, test_j = test_i.clamp(0, height - 1), test_j.clamp(0, width - 1)                                    # [height, width, num_test]
    test_mask = test_mask & mask[..., test_i, test_j]                                                           # [..., height, width, num_test]
    test_points = points[..., test_i, test_j, :]                                                                # [..., height, width, num_test, 3]
    test_dist = (test_points - points[..., None, :]).norm(dim=-1)                                               # [..., height, width, num_test]

    weight = 1 / ((test_dist <= radius_3d[..., None]) & test_mask).float().sum(dim=-1).clamp_min(1)
    weight = torch.where(mask, weight, 0)
    weight = weight / weight.sum(dim=(-2, -1), keepdim=True).add(1e-7)                                          # [..., height, width]
    return weight


def affine_invariant_local_loss(
    pred_points: torch.Tensor, 
    gt_points: torch.Tensor, 
    gt_mask: torch.Tensor, 
    focal: torch.Tensor, 
    global_scale: torch.Tensor, 
    level: Literal[4, 16, 64], 
    align_resolution: int = 32, 
    num_patches: int = 16, 
    beta: float = 0.0, 
    trunc: float = 1.0, 
    sparsity_aware: bool = False
):
    device, dtype = pred_points.device, pred_points.dtype
    *batch_shape, height, width, _ = pred_points.shape
    batch_size = math.prod(batch_shape)
    pred_points, gt_points, gt_mask, focal, global_scale = pred_points.reshape(-1, height, width, 3), gt_points.reshape(-1, height, width, 3), gt_mask.reshape(-1, height, width), focal.reshape(-1), global_scale.reshape(-1) if global_scale is not None else None
    
    # Sample patch anchor points indices [num_total_patches]
    radius_2d = math.ceil(0.5 / level * (height ** 2 + width ** 2) ** 0.5)
    radius_3d = 0.5 / level / focal * gt_points[..., 2]
    anchor_sampling_weights = compute_anchor_sampling_weight(gt_points, gt_mask, radius_2d, radius_3d, num_test=64)
    where_mask = torch.where(gt_mask)
    random_selection = torch.multinomial(anchor_sampling_weights[where_mask], num_patches * batch_size, replacement=True)
    patch_batch_idx, patch_anchor_i, patch_anchor_j = [indices[random_selection] for indices in where_mask]     # [num_total_patches]

    # Get patch indices [num_total_patches, patch_h, patch_w]
    patch_i, patch_j = torch.meshgrid(
        torch.arange(-radius_2d, radius_2d + 1, device=device), 
        torch.arange(-radius_2d, radius_2d + 1, device=device),
        indexing='ij'
    )
    patch_i, patch_j = patch_i + patch_anchor_i[:, None, None], patch_j + patch_anchor_j[:, None, None]
    patch_mask = (patch_i >= 0) & (patch_i < height) & (patch_j >= 0) & (patch_j < width)
    patch_i, patch_j = patch_i.clamp(0, height - 1), patch_j.clamp(0, width - 1)
    
    # Get patch mask and gt patch points
    gt_patch_anchor_points = gt_points[patch_batch_idx, patch_anchor_i, patch_anchor_j]
    gt_patch_radius_3d = 0.5 / level / focal[patch_batch_idx] * gt_patch_anchor_points[:, 2]
    gt_patch_points = gt_points[patch_batch_idx[:, None, None], patch_i, patch_j]
    gt_patch_dist = (gt_patch_points - gt_patch_anchor_points[:, None, None, :]).norm(dim=-1)    
    patch_mask &= gt_mask[patch_batch_idx[:, None, None], patch_i, patch_j]
    patch_mask &= gt_patch_dist <= gt_patch_radius_3d[:, None, None]

    # Pick only non-empty patches
    MINIMUM_POINTS_PER_PATCH = 32
    nonempty = torch.where(patch_mask.sum(dim=(-2, -1)) >= MINIMUM_POINTS_PER_PATCH)
    num_nonempty_patches = nonempty[0].shape[0]
    if num_nonempty_patches == 0:
        return torch.tensor(0.0, dtype=dtype, device=device), {}
    
    # Finalize all patch variables
    patch_batch_idx, patch_i, patch_j = patch_batch_idx[nonempty], patch_i[nonempty], patch_j[nonempty]
    patch_mask = patch_mask[nonempty]                                   # [num_nonempty_patches, patch_h, patch_w]
    gt_patch_points = gt_patch_points[nonempty]                         # [num_nonempty_patches, patch_h, patch_w, 3]
    gt_patch_radius_3d = gt_patch_radius_3d[nonempty]                   # [num_nonempty_patches]
    gt_patch_anchor_points = gt_patch_anchor_points[nonempty]           # [num_nonempty_patches, 3]
    pred_patch_points = pred_points[patch_batch_idx[:, None, None], patch_i, patch_j]
    
    # Align patch points
    (pred_patch_points_lr, gt_patch_points_lr), patch_lr_mask = mask_aware_nearest_resize((pred_patch_points, gt_patch_points), mask=patch_mask, size=(align_resolution, align_resolution))
    local_scale, local_shift = align_points_scale_xyz_shift(pred_patch_points_lr.flatten(-3, -2), gt_patch_points_lr.flatten(-3, -2), patch_lr_mask.flatten(-2) / gt_patch_radius_3d[:, None].add(1e-7), trunc=trunc)
    if global_scale is not None:
        scale_differ = local_scale / global_scale[patch_batch_idx]
        patch_valid = (scale_differ > 0.1) & (scale_differ < 10.0) & (global_scale > 0)
    else:
        patch_valid = local_scale > 0
    local_scale, local_shift = torch.where(patch_valid, local_scale, 0), torch.where(patch_valid[:, None], local_shift, 0)
    patch_mask &= patch_valid[:, None, None]

    pred_patch_points = local_scale[:, None, None, None] * pred_patch_points + local_shift[:, None, None, :]                   # [num_patches_nonempty, patch_h, patch_w, 3]
    
    # Compute loss
    gt_mean = harmonic_mean(gt_points[..., 2], gt_mask, dim=(-2, -1))
    patch_weight = patch_mask.float() / gt_patch_points[..., 2].clamp_min(0.1 * gt_mean[patch_batch_idx, None, None])          # [num_patches_nonempty, patch_h, patch_w]
    loss = _smooth((pred_patch_points - gt_patch_points).abs() * patch_weight[..., None], beta=beta).mean(dim=(-3, -2, -1))    # [num_patches_nonempty]
    
    if sparsity_aware:
        # Reweighting improves performance on sparse depth data. NOTE: this is not used in MoGe-1.
        sparsity = patch_mask.float().mean(dim=(-2, -1)) / patch_lr_mask.float().mean(dim=(-2, -1))
        loss = loss / (sparsity + 1e-7)
    loss = torch.scatter_reduce(torch.zeros(batch_size, dtype=dtype, device=device), dim=0, index=patch_batch_idx, src=loss, reduce='sum') / num_patches
    loss = loss.reshape(batch_shape)
    
    err = (pred_patch_points.detach() - gt_patch_points).norm(dim=-1) / gt_patch_radius_3d[..., None, None]

    # Record any scalar metric
    misc = {
        'truncated_error': weighted_mean(err.clamp_max(1), patch_mask).item(),
        'delta': weighted_mean((err < 1).float(), patch_mask).item()
    }

    return loss, misc

def normal_loss(points: torch.Tensor, gt_points: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
    device, dtype = points.device, points.dtype
    height, width = points.shape[-3:-1]

    leftup, rightup, leftdown, rightdown = points[..., :-1, :-1, :], points[..., :-1, 1:, :], points[..., 1:, :-1, :], points[..., 1:, 1:, :]
    upxleft = torch.cross(rightup - rightdown, leftdown - rightdown, dim=-1)
    leftxdown = torch.cross(leftup - rightup, rightdown - rightup, dim=-1)
    downxright = torch.cross(leftdown - leftup, rightup - leftup, dim=-1)
    rightxup = torch.cross(rightdown - leftdown, leftup - leftdown, dim=-1)

    gt_leftup, gt_rightup, gt_leftdown, gt_rightdown = gt_points[..., :-1, :-1, :], gt_points[..., :-1, 1:, :], gt_points[..., 1:, :-1, :], gt_points[..., 1:, 1:, :]
    gt_upxleft = torch.cross(gt_rightup - gt_rightdown, gt_leftdown - gt_rightdown, dim=-1)
    gt_leftxdown = torch.cross(gt_leftup - gt_rightup, gt_rightdown - gt_rightup, dim=-1)
    gt_downxright = torch.cross(gt_leftdown - gt_leftup, gt_rightup - gt_leftup, dim=-1)
    gt_rightxup = torch.cross(gt_rightdown - gt_leftdown, gt_leftup - gt_leftdown, dim=-1)

    mask_leftup, mask_rightup, mask_leftdown, mask_rightdown = mask[..., :-1, :-1], mask[..., :-1, 1:], mask[..., 1:, :-1], mask[..., 1:, 1:]
    mask_upxleft = mask_rightup & mask_leftdown & mask_rightdown
    mask_leftxdown = mask_leftup & mask_rightdown & mask_rightup
    mask_downxright = mask_leftdown & mask_rightup & mask_leftup
    mask_rightxup = mask_rightdown & mask_leftup & mask_leftdown

    MIN_ANGLE, MAX_ANGLE, BETA_RAD = math.radians(1), math.radians(90), math.radians(3)

    loss = mask_upxleft * _smooth(angle_diff_vec3(upxleft, gt_upxleft).clamp(MIN_ANGLE, MAX_ANGLE), beta=BETA_RAD) \
            + mask_leftxdown * _smooth(angle_diff_vec3(leftxdown, gt_leftxdown).clamp(MIN_ANGLE, MAX_ANGLE), beta=BETA_RAD) \
            + mask_downxright * _smooth(angle_diff_vec3(downxright, gt_downxright).clamp(MIN_ANGLE, MAX_ANGLE), beta=BETA_RAD) \
            + mask_rightxup * _smooth(angle_diff_vec3(rightxup, gt_rightxup).clamp(MIN_ANGLE, MAX_ANGLE), beta=BETA_RAD)

    loss = loss.mean() / (4 * max(points.shape[-3:-1]))

    return loss, {}


def edge_loss(points: torch.Tensor, gt_points: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
    device, dtype = points.device, points.dtype
    height, width = points.shape[-3:-1]

    dx = points[..., :-1, :, :] - points[..., 1:, :, :]
    dy = points[..., :, :-1, :] - points[..., :, 1:, :]
    
    gt_dx = gt_points[..., :-1, :, :] - gt_points[..., 1:, :, :]
    gt_dy = gt_points[..., :, :-1, :] - gt_points[..., :, 1:, :]

    mask_dx = mask[..., :-1, :] & mask[..., 1:, :]
    mask_dy = mask[..., :, :-1] & mask[..., :, 1:]

    MIN_ANGLE, MAX_ANGLE, BETA_RAD = math.radians(0.1), math.radians(90), math.radians(3)

    loss_dx = mask_dx * _smooth(angle_diff_vec3(dx, gt_dx).clamp(MIN_ANGLE, MAX_ANGLE), beta=BETA_RAD)
    loss_dy = mask_dy * _smooth(angle_diff_vec3(dy, gt_dy).clamp(MIN_ANGLE, MAX_ANGLE), beta=BETA_RAD)
    loss = (loss_dx.mean(dim=(-2, -1)) + loss_dy.mean(dim=(-2, -1))) / (2 * max(points.shape[-3:-1]))

    return loss, {}


def mask_l2_loss(pred_mask: torch.Tensor, gt_mask_pos: torch.Tensor, gt_mask_neg: torch.Tensor) -> torch.Tensor:
    loss = gt_mask_neg.float() * pred_mask.square() + gt_mask_pos.float() * (1 - pred_mask).square()
    loss = loss.mean(dim=(-2, -1))
    return loss, {}


def mask_bce_loss(pred_mask_prob: torch.Tensor, gt_mask_pos: torch.Tensor, gt_mask_neg: torch.Tensor) -> torch.Tensor:
    loss = (gt_mask_pos | gt_mask_neg) * F.binary_cross_entropy(pred_mask_prob, gt_mask_pos.float(), reduction='none')
    loss = loss.mean(dim=(-2, -1))
    return loss, {}