File size: 8,570 Bytes
a51c6d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch
import numpy as np

def get_3d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0):
    """
    grid_size: int of the grid height and width
    return:
    pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    if isinstance(grid_size, tuple):
        grid_size_h, grid_size_w = grid_size
    else:
        grid_size_h = grid_size_w = grid_size
    grid_h = np.arange(grid_size_h, dtype=np.float32)
    grid_w = np.arange(grid_size_w, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size_h, grid_size_w])
    pos_embed = get_3d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token and extra_tokens > 0:
        pos_embed = np.concatenate(
            [np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0
        )
    return pos_embed


def get_3d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 3 == 0

    # use half of dimensions to encode grid_h
    B, S, N, _ = grid.shape
    gridx = grid[..., 0].view(B*S*N).detach().cpu().numpy()
    gridy = grid[..., 1].view(B*S*N).detach().cpu().numpy()
    gridz = grid[..., 2].view(B*S*N).detach().cpu().numpy()
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 3, gridx)  # (N, D/3)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 3, gridy)  # (N, D/3)
    emb_z = get_1d_sincos_pos_embed_from_grid(embed_dim // 3, gridz)  # (N, D/3)

    emb = np.concatenate([emb_h, emb_w, emb_z], axis=1)  # (N, D)
    emb = torch.from_numpy(emb).to(grid.device)
    return emb.view(B, S, N, embed_dim)


def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0):
    """
    grid_size: int of the grid height and width
    return:
    pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    if isinstance(grid_size, tuple):
        grid_size_h, grid_size_w = grid_size
    else:
        grid_size_h = grid_size_w = grid_size
    grid_h = np.arange(grid_size_h, dtype=np.float32)
    grid_w = np.arange(grid_size_w, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size_h, grid_size_w])
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token and extra_tokens > 0:
        pos_embed = np.concatenate(
            [np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0
        )
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float64)
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000 ** omega  # (D/2,)
    pos = pos.reshape(-1)  # (M,)
    out = np.einsum("m,d->md", pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


def get_2d_embedding(xy, C, cat_coords=True):
    B, N, D = xy.shape
    assert D == 2

    x = xy[:, :, 0:1]
    y = xy[:, :, 1:2]
    div_term = (
        torch.arange(0, C, 2, device=xy.device, dtype=torch.float32) * (1000.0 / C)
    ).reshape(1, 1, int(C / 2))

    pe_x = torch.zeros(B, N, C, device=xy.device, dtype=torch.float32)
    pe_y = torch.zeros(B, N, C, device=xy.device, dtype=torch.float32)

    pe_x[:, :, 0::2] = torch.sin(x * div_term)
    pe_x[:, :, 1::2] = torch.cos(x * div_term)

    pe_y[:, :, 0::2] = torch.sin(y * div_term)
    pe_y[:, :, 1::2] = torch.cos(y * div_term)

    pe = torch.cat([pe_x, pe_y], dim=2)  # B, N, C*3
    if cat_coords:
        pe = torch.cat([xy, pe], dim=2)  # B, N, C*3+3
    return pe


def get_3d_embedding(xyz, C, cat_coords=True):
    B, N, D = xyz.shape
    assert D == 3

    x = xyz[:, :, 0:1]
    y = xyz[:, :, 1:2]
    z = xyz[:, :, 2:3]
    div_term = (
        torch.arange(0, C, 2, device=xyz.device, dtype=torch.float32) * (1000.0 / C)
    ).reshape(1, 1, int(C / 2))

    pe_x = torch.zeros(B, N, C, device=xyz.device, dtype=torch.float32)
    pe_y = torch.zeros(B, N, C, device=xyz.device, dtype=torch.float32)
    pe_z = torch.zeros(B, N, C, device=xyz.device, dtype=torch.float32)

    pe_x[:, :, 0::2] = torch.sin(x * div_term)
    pe_x[:, :, 1::2] = torch.cos(x * div_term)

    pe_y[:, :, 0::2] = torch.sin(y * div_term)
    pe_y[:, :, 1::2] = torch.cos(y * div_term)

    pe_z[:, :, 0::2] = torch.sin(z * div_term)
    pe_z[:, :, 1::2] = torch.cos(z * div_term)

    pe = torch.cat([pe_x, pe_y, pe_z], dim=2)  # B, N, C*3
    if cat_coords:
        pe = torch.cat([pe, xyz], dim=2)  # B, N, C*3+3
    return pe


def get_4d_embedding(xyzw, C, cat_coords=True):
    B, N, D = xyzw.shape
    assert D == 4

    x = xyzw[:, :, 0:1]
    y = xyzw[:, :, 1:2]
    z = xyzw[:, :, 2:3]
    w = xyzw[:, :, 3:4]
    div_term = (
        torch.arange(0, C, 2, device=xyzw.device, dtype=torch.float32) * (1000.0 / C)
    ).reshape(1, 1, int(C / 2))

    pe_x = torch.zeros(B, N, C, device=xyzw.device, dtype=torch.float32)
    pe_y = torch.zeros(B, N, C, device=xyzw.device, dtype=torch.float32)
    pe_z = torch.zeros(B, N, C, device=xyzw.device, dtype=torch.float32)
    pe_w = torch.zeros(B, N, C, device=xyzw.device, dtype=torch.float32)

    pe_x[:, :, 0::2] = torch.sin(x * div_term)
    pe_x[:, :, 1::2] = torch.cos(x * div_term)

    pe_y[:, :, 0::2] = torch.sin(y * div_term)
    pe_y[:, :, 1::2] = torch.cos(y * div_term)

    pe_z[:, :, 0::2] = torch.sin(z * div_term)
    pe_z[:, :, 1::2] = torch.cos(z * div_term)

    pe_w[:, :, 0::2] = torch.sin(w * div_term)
    pe_w[:, :, 1::2] = torch.cos(w * div_term)

    pe = torch.cat([pe_x, pe_y, pe_z, pe_w], dim=2)  # B, N, C*3
    if cat_coords:
        pe = torch.cat([pe, xyzw], dim=2)  # B, N, C*3+3
    return pe

import torch.nn as nn
class Embedder_Fourier(nn.Module):
    def __init__(self, input_dim, max_freq_log2, N_freqs,
                 log_sampling=True, include_input=True,
                 periodic_fns=(torch.sin, torch.cos)):
        '''
        :param input_dim: dimension of input to be embedded
        :param max_freq_log2: log2 of max freq; min freq is 1 by default
        :param N_freqs: number of frequency bands
        :param log_sampling: if True, frequency bands are linerly sampled in log-space
        :param include_input: if True, raw input is included in the embedding
        :param periodic_fns: periodic functions used to embed input
        '''
        super(Embedder_Fourier, self).__init__()

        self.input_dim = input_dim
        self.include_input = include_input
        self.periodic_fns = periodic_fns

        self.out_dim = 0
        if self.include_input:
            self.out_dim += self.input_dim

        self.out_dim += self.input_dim * N_freqs * len(self.periodic_fns)

        if log_sampling:
            self.freq_bands = 2. ** torch.linspace(0., max_freq_log2, N_freqs)
        else:
            self.freq_bands = torch.linspace(
                2. ** 0., 2. ** max_freq_log2, N_freqs)

        self.freq_bands = self.freq_bands.numpy().tolist()

    def forward(self,
                input: torch.Tensor,
                rescale: float = 1.0):
        '''
        :param input: tensor of shape [..., self.input_dim]
        :return: tensor of shape [..., self.out_dim]
        '''
        assert (input.shape[-1] == self.input_dim)
        out = []
        if self.include_input:
            out.append(input/rescale)

        for i in range(len(self.freq_bands)):
            freq = self.freq_bands[i]
            for p_fn in self.periodic_fns:
                out.append(p_fn(input * freq))
        out = torch.cat(out, dim=-1)

        assert (out.shape[-1] == self.out_dim)
        return out