File size: 643 Bytes
20d97e8
 
90faf8d
20d97e8
 
 
 
 
 
 
 
 
 
 
90faf8d
20d97e8
 
90faf8d
20d97e8
90faf8d
20d97e8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
from transformers import pipeline

# Loading a sentiment model
sentiment_model = pipeline("sentiment-analysis", model="cardiffnlp/twitter-xlm-roberta-base-sentiment")

def analyze_sentiment(text):
    """
    Uses a specialized sentiment model better suited for medical text.
    """
    result = sentiment_model(text)[0]["label"]

    if result.lower() == "positive":
        return "Positive"
    elif result.lower() == "negative":
        return "Concerned" 
    return "Neutral"


if __name__ == "__main__":
    sample_text = "I've been feeling really weak for the past few days."
    print(f"Sentiment: {analyze_sentiment(sample_text)}")