Spaces:
Sleeping
Sleeping
Commit
Β·
d38e058
1
Parent(s):
6934d2a
add the gradion interface
Browse files- README.md +29 -1
- app.py +111 -0
- requirements.txt +5 -0
README.md
CHANGED
@@ -10,4 +10,32 @@ pinned: false
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
+
# Ad Comments Intent Classifier
|
14 |
+
|
15 |
+
This Space provides an interface for classifying the intent of comments related to advertisements using the `YosefA/adfluence-intent-model`.
|
16 |
+
|
17 |
+
## Features
|
18 |
+
|
19 |
+
- π― **Intent Classification**: Analyze comment text to determine the underlying intent
|
20 |
+
- π **Confidence Scores**: Get probability scores for each predicted label
|
21 |
+
- π‘ **Easy to Use**: Simple interface with example comments provided
|
22 |
+
- β‘ **Fast Inference**: Optimized for quick classification results
|
23 |
+
|
24 |
+
## How to Use
|
25 |
+
|
26 |
+
1. Enter your comment text in the input box
|
27 |
+
2. Click "π Classify Intent" or press Enter
|
28 |
+
3. View the classification results with confidence scores
|
29 |
+
|
30 |
+
## Model Information
|
31 |
+
|
32 |
+
This app uses the `YosefA/adfluence-intent-model` from Hugging Face, which is trained to classify the intent of comments in advertising contexts.
|
33 |
+
|
34 |
+
## Examples
|
35 |
+
|
36 |
+
Try these example comments to see how the classifier works:
|
37 |
+
- "This product looks amazing! Where can I buy it?"
|
38 |
+
- "This is clearly a scam, don't trust it."
|
39 |
+
- "I love this brand, they make quality products."
|
40 |
+
- "The price seems too high for what you get."
|
41 |
+
- "Has anyone tried this? I'm curious about reviews."
|
app.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load the model from Hugging Face
|
6 |
+
@gr.cache
|
7 |
+
def load_model():
|
8 |
+
"""Load the intent classification model"""
|
9 |
+
try:
|
10 |
+
classifier = pipeline(
|
11 |
+
"text-classification",
|
12 |
+
model="YosefA/adfluence-intent-model",
|
13 |
+
return_all_scores=True
|
14 |
+
)
|
15 |
+
return classifier
|
16 |
+
except Exception as e:
|
17 |
+
print(f"Error loading model: {e}")
|
18 |
+
return None
|
19 |
+
|
20 |
+
def classify_intent(comment):
|
21 |
+
"""
|
22 |
+
Classify the intent of a comment
|
23 |
+
|
24 |
+
Args:
|
25 |
+
comment (str): The input comment text
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
dict: Classification results with labels and scores
|
29 |
+
"""
|
30 |
+
if not comment.strip():
|
31 |
+
return "Please enter a comment to classify."
|
32 |
+
|
33 |
+
classifier = load_model()
|
34 |
+
if classifier is None:
|
35 |
+
return "Error: Could not load the model. Please try again later."
|
36 |
+
|
37 |
+
try:
|
38 |
+
# Get predictions
|
39 |
+
results = classifier(comment)
|
40 |
+
|
41 |
+
# Format results for display
|
42 |
+
formatted_results = []
|
43 |
+
for result in results:
|
44 |
+
for item in result:
|
45 |
+
label = item['label']
|
46 |
+
score = item['score']
|
47 |
+
formatted_results.append(f"{label}: {score:.4f} ({score*100:.2f}%)")
|
48 |
+
|
49 |
+
return "\n".join(formatted_results)
|
50 |
+
|
51 |
+
except Exception as e:
|
52 |
+
return f"Error during classification: {str(e)}"
|
53 |
+
|
54 |
+
# Create the Gradio interface
|
55 |
+
with gr.Blocks(title="Ad Comments Intent Classifier") as demo:
|
56 |
+
gr.Markdown("""
|
57 |
+
# π― Ad Comments Intent Classifier
|
58 |
+
|
59 |
+
This app classifies the intent of comments related to advertisements using the **YosefA/adfluence-intent-model**.
|
60 |
+
|
61 |
+
Simply enter a comment below and get the classification results with confidence scores.
|
62 |
+
""")
|
63 |
+
|
64 |
+
with gr.Row():
|
65 |
+
with gr.Column():
|
66 |
+
comment_input = gr.Textbox(
|
67 |
+
label="Comment Text",
|
68 |
+
placeholder="Enter your comment here...",
|
69 |
+
lines=3,
|
70 |
+
max_lines=10
|
71 |
+
)
|
72 |
+
|
73 |
+
classify_btn = gr.Button("π Classify Intent", variant="primary")
|
74 |
+
|
75 |
+
with gr.Column():
|
76 |
+
output = gr.Textbox(
|
77 |
+
label="Classification Results",
|
78 |
+
lines=5,
|
79 |
+
max_lines=10,
|
80 |
+
interactive=False
|
81 |
+
)
|
82 |
+
|
83 |
+
# Example inputs
|
84 |
+
gr.Examples(
|
85 |
+
examples=[
|
86 |
+
["This product looks amazing! Where can I buy it?"],
|
87 |
+
["This is clearly a scam, don't trust it."],
|
88 |
+
["I love this brand, they make quality products."],
|
89 |
+
["The price seems too high for what you get."],
|
90 |
+
["Has anyone tried this? I'm curious about reviews."]
|
91 |
+
],
|
92 |
+
inputs=comment_input,
|
93 |
+
label="π Example Comments"
|
94 |
+
)
|
95 |
+
|
96 |
+
# Set up the event handlers
|
97 |
+
classify_btn.click(
|
98 |
+
fn=classify_intent,
|
99 |
+
inputs=comment_input,
|
100 |
+
outputs=output
|
101 |
+
)
|
102 |
+
|
103 |
+
comment_input.submit(
|
104 |
+
fn=classify_intent,
|
105 |
+
inputs=comment_input,
|
106 |
+
outputs=output
|
107 |
+
)
|
108 |
+
|
109 |
+
# Launch the app
|
110 |
+
if __name__ == "__main__":
|
111 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.44.0
|
2 |
+
transformers==4.36.0
|
3 |
+
torch==2.1.0
|
4 |
+
tokenizers==0.15.0
|
5 |
+
huggingface_hub==0.19.4
|