from transformers import CamembertTokenizer, CamembertForSequenceClassification import torch class FineTunedModel: def __init__(self): model_id = "ymokay/toxicheck-camembert" self.tokenizer = CamembertTokenizer.from_pretrained(model_id) self.model = CamembertForSequenceClassification.from_pretrained(model_id) self.model.eval() self.label_map = { "LABEL_0": "non-toxique", "LABEL_1": "toxique" } def predict(self, text: str): inputs = self.tokenizer(text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): logits = self.model(**inputs).logits probs = torch.softmax(logits, dim=1).squeeze() labels = [self.label_map.get(self.model.config.id2label[i], self.model.config.id2label[i]) for i in range(len(probs))] return [(label, float(probs[i])) for i, label in enumerate(labels)]