Tbruand
commited on
Commit
·
39dcbb5
1
Parent(s):
6bfce7a
feat(models): ajoute un modèle few-shot simulé basé sur des exemples textuels
Browse files- models/few_shot.py +21 -0
models/few_shot.py
CHANGED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
from models.base import BaseModel
|
4 |
+
|
5 |
+
class FewShotModel(BaseModel):
|
6 |
+
def __init__(self):
|
7 |
+
self.examples = [
|
8 |
+
("Tu es un abruti", "toxique"),
|
9 |
+
("Je vais te tuer", "toxique"),
|
10 |
+
("Merci pour ton aide", "non-toxique"),
|
11 |
+
("J'apprécie ton soutien", "non-toxique")
|
12 |
+
]
|
13 |
+
|
14 |
+
def predict(self, text: str) -> str:
|
15 |
+
text = text.lower()
|
16 |
+
|
17 |
+
# Score simple basé sur correspondance de mots-clés
|
18 |
+
toxic_score = sum(any(word in example.lower() for word in text.split()) for example, label in self.examples if label == "toxique")
|
19 |
+
non_toxic_score = sum(any(word in example.lower() for word in text.split()) for example, label in self.examples if label == "non-toxique")
|
20 |
+
|
21 |
+
return "toxique" if toxic_score >= non_toxic_score else "non-toxique"
|